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Abstract

This thesis is focused on understanding the role that structures of interactions have on

multi-agent systems, which are probably the prototypical instances of artificial societies.

This thesis can hopefully be read as a contribution to the research area dealing with the

interdependence between a system and its components. We frame our research in systems in

which the components of the system are social, regardless of the fact that components might

be computational entities, as it is the case of multi-agent systems. Our aim is twofold, since

we hope to study the effect that these structures of interaction between agents have both at

the level of individuals and at the level of the system. The leitmotif of the research presented

in this thesis is the social structure, and we address the role played by this structure from

different perspectives.

First, we attend to the task of drawing implicit information embedded in the relation-

ships between individuals. To that end, we present a several algorithms that are able to

extract knowledge by means of analyzing the structure of the social network. While the

first algorithm relies on the analysis of the social network to infer a reputation measure

for the agents, the second one is intended to identify the underlying community structure

that exists in the social network. After addressing structure as a source of knowledge we

turn our attention towards the effect that certain structures - patterns of interactions - have

on a system’s dynamics. We study which structures favor the emergence of cooperation

between agents and show that certain structures, specifically complex networks, facilitate

the emergence of autonomously-agreed normative behavior — a convention. Furthermore,

we show that when one convention is more beneficial than alternative conventions, the same

properties of the network promote the adoption of the most desirable convention. Last but

not least, we also study the process of formation of complex networks, we show that agents

performing a local optimization process, grounded in sociologically plausible assumptions,

can arrange themselves so that they display different structures of interactions, networks

being complex one of them.

Although the focus of our research is on a particular case of artificial societies, the

conclusions derived from this thesis are not limited to multi-agent systems. Our research

is an inter-disciplinary approach to complex social systems. We use different methodologies

borrowed from Physics, Complex Systems, Sociology, Computer Science and, of course,

Artificial Intelligence in order to contribute to a better understanding of social systems in

general, and multi-agent systems in particular.
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Resum

La tesis aqúı presentada és una contribució a l’àrea de recerca que tracta d’entendre la

interacció existent entre un sistema i els seus components. En particular, el domini que ens

interessa és el dels sistemes multi-agent com a prototipus de societat artificial. La nostra

recerca està enmarcada en sistemes eminenment socials, encara que estiguin formats per

entitats computacionals com és el cas dels sistemes multi-agent. El nostre objectiu es centra

en l’estudi del rol que l’estructura de les interaccions entre els agents del sistema té tant en el

comportament individual dels agents com en la dinàmica del sistema. La recerca presentada

en aquesta tesis té com a fil conductor l’estudi de l’efecte prodüıt per l’estructura social a

diversos nivells.

En un primer nivell ens centrem en la extracció de la informació impĺıcita que existeix

en les relacions entre agents. Per aquest fi presentem dos algoritmes capaços d’extreure

coneixement tant dels agents com del sistema mitjançant l’anàlisi de l’estructura de la xarxa

social que representa les interaccions entre agents. El primer algoritme infereix una mesura

de la reputació dels agents a partir de la seva posició en la xarxa social. El segon algoritme

troba l’estructura de comunitats encastada en la xarxa social. Posteriorment, ens centrem

en l’estudi que determinades estructures tenen sobre la dinàmica del sistema. Aix́ı doncs

analitzem quines són les estructures que afavoreixen l’aparició de convencions, on tots els

agents accedeixen de forma autònoma a mantenir un comportament normatiu. Veurem

que determinades estructures socials, en particular algunes de les propietats que són car-

acteŕıstiques de les xarxes complexes, faciliten l’emergència d’aquestes convencions. També

comprovarem que en el cas que una de les possibles convencions sigui més beneficiosa pel

sistema com a conjunt, aquestes mateixes propietats de la xarxa afavoriran que el sistema

es decanti per la convenció més favorable. Per acabar, també estudiarem com les xarxes

complexes, entre altres tipus de xarxa, poden ser el resultat d’un procés d’optimització lo-

cal en el que el comportament dels agents està basat en assumpcions realistes des de una

perspectiva sociològica.

Tot i que el domini de la tesis sigui el dels sistemes multi-agent com a paradigma de les

societats artificials, les conclusions que s’en deriven no són exclusives dels sistemes multi-

agent. La nostra recerca és una aproximació multi-disciplinar als sistemes socials complexos.

Aix́ı doncs, diferents metodologies manllevades de la f́ısica, sistemes complexos, sociologia,

la informàtica i per suposat la intel.ligència artificial són combinades per contribuir a una

millor comprensió dels sistemes socials com ara els sistemes multi-agent.
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Chapter 1

Introduction

This thesis aims to provide some evidence on how the structure — pattern of in-

teractions — between individual actors living in a society affects both individual

behaviour and the society as a whole (i.e. the sum of all individuals actor plus their

interactions). The motto of this thesis could be described as “structure matters”.

The core of the research presented in this thesis is the analysis of the interdepen-

dence between social structure and social individuals. However, we do not address

the problem from a single perspective. We divide the thesis into three parts which

might, at first sight, seem heterogeneous, but which in fact share a common aim.

The first part is focused on extracting knowledge about a society that does not

belong to any of its particular constituents but to their mutual relationships. Quot-

ing Kevin Kelly “an organization’s intelligence is distributed to the point of being

ubiquitous” [134]. Beyond considerations on intelligence, we would add that the

same applies to knowledge. Most of the knowledge of any kind of social system,

community, organization or society resides in the relationships between its con-

stituents. Therefore, methods to extract that knowledge prove useful for a better

understanding of both the individual actors and the society as a whole.

The second part of our research addresses the question of how social mecha-

nisms, such as conventions, are affected by the structure of the interactions between

individuals. A convention is a situation were all actors display certain (patterns of)

behaviour. In order to comply with a given convention the behaviour of individ-

ual actors will be determined by its internal state as well as by the rest of society.

However, differences in the structure of a society produce different results in the

actors internal state. Certain structures can facilitate the emergence and spread

of conventions. Furthermore, structure also affects the normative behaviour that is

established eventually.

In the last part of our thesis we deal with the problem of how social structures

can be formed by autonomous self-interested actors without centralized control.

5



6 CHAPTER 1. INTRODUCTION

In particular, we are interested in those social structures that have been shown

to improve coordination and other interesting properties such as robustness and

efficiency in information diffusion [60, 13, 63, 14].

1.1 Artificial Societies

Social science defines society as a network of relationships between social entities.

Implicit in the meaning of society is that its members share some mutual concern

or interest, a common objective or some common characteristics. As such, society is

often used as synonymous to the collective citizenry of a country as directed through

national institutions concerned with civic welfare.

By definition society covers any kind of social entity. A Multi-Agent System

(MAS) can be defined as systems composed of a set of agents who interact with

each other to perform complex tasks [236]. This definition clearly poses a question;

do Multi-agent Systems form societies? We believe that the answer is affirmative in

spite of the differences between the constituents of both systems; software agents in

one case and humans in the other. [80, 170]

The level of sociality — the quality of being social — required by the definition

of society is more restrictive than the aforementioned definition of MAS. Gilbert

[98] pointedly illustrates this in his “walking together” example. Imagine a person is

walking down the road, then another person joins her and they both walk down the

road. They are not walking together, they are just walking alongside. Accordingly, if

two agents interact but they do not collaborate or share a set of values of goals, their

interaction is not fully social, assuming that there are different levels of sociality.

Therefore, the artificial adjective is not strictly necessary to define society, although

it is used to stress the different nature of the individual actors. Other authors who

prefer not to use the term society use the term Artificial Social Systems instead.

[170]

Regardless of the level of sociality in agents, they do interact with each other

to carry out a complex task. As a consequence of these interactions many of the

problems of sociology and multi-agent systems are closely related [33]. This is the

reason why social theories are called upon as a framework in which to set the research

in MAS and solve the associated research questions. MAS researchers and designers

face the problem of ensuring efficiency and stability at the level of the system whilst

maintaining the autonomy of the agents. Sociology, on the other hand, tries to

understand how a system of autonomous entities (humans) can organize itself in

such a way that it forms a fairly efficient and stable system (our organizations,

communities, institutions and societies). Both disciplines look at the same problem

from complementary points of view [33, 219, 43, 44].
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Not only MAS researchers are concerned with applying mechanisms borrowed

from social science to their systems. Actually, any open system which has con-

stituents that poses certain degree of autonomy can benefit from this approach.

Thus peer-to-peer systems (P2P) [111], web-services (WS) [162], collaborative envi-

ronments, recommender systems [161], business portals are following the same steps

of MAS. At the conceptual level, there is a big difference between MAS, P2P, WS

and the other systems, since the individual actors of the first group are software

programs, while individual actors of the second are predominantly humans, with

the exception of the cases in which agent act as avatars of persons in electronic

communities. Despite these differences between the nature of the individual actors

of each system, social mechanisms have borrowed elements from Sociology, such as

reputation, trust, norms and conventions. These elements help systems to operate

properly, some examples of systems that rely on social mechanisms are e-bay 1 and

Slashdot. E-bay has a simple yet effective model for reputation and trust that helps

users conduct (almost) safe trades. In the case of Slashdot2 the users are readers

and censors at the same time. The users censor the comments in a collaborative

way, and some conventions such “stop the flames” and “don’t feed the troll” are

widely accepted and adhered to without any central censor that manages it all. As

a consequence, Slashdot’s comments usually are of decent quality. This is the result

of a system where undesirable comments are filtered out without the need for any

centralized censorship.

The thesis addresses computational entities -multi-agent systems- as the com-

ponents that build up artificial societies. Nevertheless, most of the results, findings

and insights presented are very general. Hence, they can also be applied to other

systems.

1.2 Complex Social Systems and Networks

Societies, and by extension Artificial Societies, are complex systems. In a society

global dynamics emerge from the interactions of its parts rather than from the com-

mand of a central controller or designer. Emergence expresses arising properties

at the global level that are not reducible to the properties of the individuals (mi-

cro level). Formally, a complex system [30] refers to a system built up of many

parts which are coupled in a nonlinear fashion. Because they are nonlinear, com-

plex systems are more than the sum of their parts since they are not subjected to

the principle of superposition. A non-linear connection means that the change on

one side is not proportional to a change on the other side. When non-linearities

1http://ebay.com it is the biggest on-line market-place in the world. With a revenue of $2.17

billion in 2003
2http://slashdot.org
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are frequent in a system, behaviours at the global (macro) level can be as unpre-

dictable as interesting. As a consequence, the reductionist (top-down) approach is

not sufficient to understand this kind of systems. Since a complex system is the

sum of its parts and their relations cannot be broken down into sub-systems which

are easier to analyze without losing part of the essence of the system. Without

denying that reductionism accounts for many achievements in the understanding of

complex systems, we concur with the argument that a holistic approach is necessary

to complement this view.

One of the disciplines that has devoted more effort to the understanding of a

particular kind of complex system is Sociology. Together with other Social Sciences

such as Economics, Organizational Theory and Social Psychology, Sociology has

made and effort over the years to find order in societies. Many theories have been

proposed in order to comprehend the complexity of society, and two main streams

of research within social theory can be identified. One focuses on the macro level,

studying the collective behaviour. The other focuses on the micro level, studying

the individual behaviour. Both approaches are antagonist; macro-sociology takes

individual behaviour as a mere consequence of its position or role within the group.

Whereas, individualism takes the collective behaviour as the mere superposition

of autonomous individuals’ behaviour. Sociology has been the playground of the

discussion between these two conceptual approaches of finding order in societies. A

third approach has been brought forward in Sociology. Giddens [97] proposed an

intermediate theory where the relation between both levels is circular. Changes at

one level lead to changes at the other level. In turn, the first level is affected by

the alteration it has brought about at the second level. Both levels influence each

other. A clear example of this is an ecosystem, where its inhabitants can modify

the environment but at the same time the environment shapes the individuals who

live in it. There exists mutual interdependency. Ecology has shown us that there

is no isolation between the system and the individuals, and that the actions of the

individuals affect other individuals through the environment. We support the idea

that social processes are very similar to those of ecosystems, since the interactions

between autonomous individuals affect the collective, which in turn bounds their

individual behaviours.

The approach suggested by Giddens was not novel in science. Many disciplines,

especially those involving real systems such as Ecology, Physics or Biology have come

to a similar conclusion. In fact, a cross-field discipline called complexity [132, 59] has

devoted itself to the study of complex systems. This discipline has provided insights

into many different complex physical systems. However many of these insights can-

not be directly translated into social sciences. This is mainly due to the difference

in the nature of individuals in physical and social complex systems. Furthermore,

assumptions that can be acceptable in some systems can turn out to be unacceptable



1.2. COMPLEX SOCIAL SYSTEMS AND NETWORKS 9

in others. For instance, many models aiming to explain certain complex phenomena

in physical systems assume homogeneous populations and trivial interaction pat-

terns, commonly represented by complete, regular or random networks. If those

limiting assumptions were to be relaxed because they are too restrictive the model

would easily become analytically intractable. This is the reason why Sociology, de-

spite studying complex social systems, does not heavily rely on this approach. The

assumptions required to obtain analytical solutions to social complex processes too

often turn out to be implausible and unrealistic in terms of Sociology. However,

this is changing rapidly thanks to a new methodology known as agent-based mod-

elling [100, 99, 80, 155], which allows to build models with plausible assumptions

and non-trivial interaction patterns. It also allows to formally experiment with

those models, hence obtaining some insights in systems that are too complex to be

approached analytically.

Nevertheless, Sociology has not downplayed the relevance of the relations be-

tween individuals. Well before complexity proposed a holistic approach, the rela-

tionships were already studied in Sociology, for example in the field of Social Network

Analysis [163, 106, 226]. This area departed from the traditional sociological studies

that focused only on the attributes of individuals. It produced an alternative view

where the attributes of individuals were less important than their relationships and

ties with other members of the network. Despite focusing on the relationships rather

than on the attributes of the individuals, social network analysis did not intend to

fill the gap between the micro and macro levels. Its aim was to add the relational

data to the already existing attribute and ideational data, so that network analysis

could be incorporated to variable analysis and typological analysis already used in

Sociology [200].

Social network analysis shows that it is useful to assume that the relationships

between components of a system can be characterized as networks, where nodes

stand for the individuals and the relations are edges between nodes. In recent years

network research has experienced an impressive growth thanks to the availability

of very large networks covering a wide range of systems. The spread of computer

resources and the rise of its power has facilitated the compilation of very large

networks and their analysis. While social network analysis has been characterized

by managing relatively small networks, up to some hundred nodes, nowadays we

can easily analyze networks of millions. This change in scale by several orders of

magnitude provided a sound basis for analyzing the statistical properties of these

networks.

The analysis of these networks has revealed common patterns and regularities

despite the very different nature of the systems being modelled. Networks such as the

Web [12, 4], networks of sexual contacts [150], scientific collaborations [24], protein

networks [125] or phone calls [9] share topological similarities such as a characteristic
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connectivity distribution (e.g. a power-law [22]), or the small world effect [163, 232],

that corresponds to an unexpected short average path length and diameter of the

network while displaying a very high clustering. However, what is most interesting

about these networks is that they emerge from a wide range of systems without any

central control. Complex systems tend to form non-trivial structures of interactions

known as complex networks.

So this raises at least three questions to whose answer our thesis aims to con-

tribute. First, how such different natural and artificial systems can self-organize to

display such patterns on their topology of interactions? Second, why these systems

end up forming complex networks and not other structures? And third, are the

properties of these non-trivial structures beneficial to the efficiency and stability of

the system?

The structural similarities between many different systems lead us to think that

structure plays a crucial role in the dynamics of complex systems. In our thesis we

focus on how structure can benefit artificial societies composed by computational

entities. If artificial societies, i.e. societies of agents, are to become a reality, they

have to share the same versatility, efficiency, stability as their natural counterparts.

So, the understanding of complex systems, specially of complex social systems, is

required in order to build functional artificial societies.

1.3 Objectives

The main goal of this thesis is to study the relevance of social structure in multi-agent

systems and other artificial societies. As we already discussed in the introduction,

it is not possible to fully comprehend a system without taking into account the

relationships between its individual actors. Thus, the purpose of the thesis is to

contribute to a better understanding of how the structure of a network of interactions

affects both systems’ dynamics and individual behaviour. Furthermore, the analysis

of the relationships between agents can also provide useful information about both

the system and the individuals, since some information does not belong to anyone

in particular but is distributed throughout the system.

With this broad aim in mind we set ourselves the task of studying the role of

structure in three different areas:

1. First, we wanted to investigate which are the social structures resulting from

complex dynamics in which agents change both their behaviour and their rela-

tionships. Do agents naturally arrange themselves into particular structures as

it has been found in many natural complex systems? If so, this would provide

some evidence that certain topologies emerge regardless of the nature of the

agents.
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2. The next goal was to analyze the effects of structure on the behaviour of the

system as a whole. Can certain topologies facilitate the emergence and sta-

bilization of cooperative regimes? Can topology improve coordination among

agents? Those questions are crucial for multi-agent systems; cooperation and

coordination are agent-level choices in autonomous agents. However, the best

course of action for an agent depends on its environment. Thus, it is plausible

to assume that the structure of agents’ interactions have a deep effect on the

emergence and maintenance of these regimes.

3. Finally, we also want to study how structure can be used to infer social mea-

sures such as reputation, authority and group membership. Those social mea-

sures are called upon in order to reduce the inherent complexity and uncer-

tainty of open systems. Thus, we will also address the problem of how structure

can be used to extract this kind of knowledge.

Although the focus of our research is on multi-agent systems, the findings, results

and insights that this thesis might provide can also be applied to other complex social

systems.

1.4 Structure of the Thesis

This thesis is structured in nine chapters grouped in five parts. The first part

consists of this current introduction plus background chapters. The following three

parts address the three main goals of our research as stated in the previous section.

The last part contains the conclusions plus the annexes. Figure 1.1 sketches the

structure of the thesis.

The first part summarizes and reviews concepts extensively used through the

thesis. In particular, chapter 2 focuses on individual actors of a society: social agents.

A brief description and some previous work on multi-agent systems and agent-based

models are briefly reviewed. Moreover, social mechanisms such as reputation, trust,

norms and conventions are also described. Although all these concepts are also

described in the following chapters, where our actual research is presented, chapter

2 and 3 provide the basics of the problems we address in this thesis.

In chapter 3 we present how different disciplines — with their own techniques

and methodologies — approach the study of social structures and networks. First,

we present how social structure affect multi-agent and collaborative systems. After

reviewing the Computer Science approach, the thesis turns towards a sociologically

grounded discipline that has been studying the effect of structure in human societies

since the 60’s: Social Network Analysis. Last but not least, we also review the work

of physicists in finding non-trivial interaction patterns in real complex systems,
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which are known as complex networks. The last part of the chapter is devoted solely

to complex networks since concepts related to complex networks are profusely used

troughout the thesis.

The second part of the thesis is about acquiring knowledge by analyzing the

structure of the network. The topology of the network contains knowledge both at

the individual agent level, such as reputation, and at the society level, by finding

the community structure. In chapter 4 we present an algorithm that ranks agents

by analyzing their position in network of interactions. We also show how this rank

can be used as a measure of reputation of individual agents. In chapter 5 we present

another algorithm that is able to reveal the underlying community structure of the

network by analyzing the interactions between agents.

The third part of the thesis addresses the question of how network structure

affects the behaviour of its constituents. Concretely we study the relation between

the emergence of a social convention and network topology. As we shall see in

chapter 6, the time for a convention to emerge heavily depends on the network

topology. Whereas certain social structures facilitate the coordination of agents to

follow a certain behaviour, other social structures make coordination difficult to

achieve. Furthermore, the effect of the underlying social structure is not limited to

the convergence time, i.e. the time needed for the convention to be established, but

it also affects which convention is finally established. In chapter 7 we show that

in the case that two conventions are not equivalent the underlying social structure

plays an important role driving the dynamics towards a particular convention.

The fourth part of the thesis focuses on the dynamics of social structure. In chap-

ter 8 we show how complex networks can emerge from a local optimization process

whose rationale is grounded in the social exchange theory. Thus, we give evidence
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that several social structures observed in empirical networks can be reproduced by

an agent-based model with sociologically plausible assumptions.

Finally, the last part of the thesis consists of the conclusions, which can be found

in chapter 9, plus the corresponding annexes.
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Chapter 2

Social Agents

This chapter comprises a brief overview of agents with an special emphasis on their

social dimension. First we overview multi-agent system and argue about the need for

social mechanism in order to exploit the agent paradigm to its full extent. The social

mechanisms that are relevant for agents: reputation trust, norms and conventions are

also overviewed, placing especial emphasis on their relation to multi-agent systems.

Finally, we address agent-based models as the means for a better understanding

of the complex social processes that take place in multi-agent systems and other

artificial societies.

2.1 Multi-Agent Systems

Many research areas exist within multi-agent system: semantics, communication

languages, ontologies and knowledge representation, reasoning, planning, learning,

and so on [235]. The list is very long, as it has to, since the agent paradigm is very

ambitious. In fact, many of the research areas within multi-agent systems are inher-

ited from classical Artificial Intelligence. Social aspects of agents are no exception.

Long before Jennings proposed the Social Level [124], which was the natural exten-

sion of the Newell’s Knowledge Level [172], Distributed Artificial Intelligence [182]

was already working on some of the problems inherited later by multi-agents sys-

tems. For instance, coordination, cooperation, competition, and conflict resolution.

There are different approaches to social aspects of agents: formal logic [66, 234],

cognitive approaches [57, 54], emergence and self-organization [116, 33, 170].

Wooldrige and Jennings [236, 235] define multi-agent systems as systems com-

posed by a set of agents who interact with each other to perform complex tasks.

Agents are defined as computer programs capable of taking their own decisions with

no external control (autonomy), based on their perceptions of the environment and

the objectives they aim to satisfy. Although there is no total agreement about what

15
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an agent really is, probably due to the ambiguous nature of the term and its use

by other areas of knowledge, there is at least some common ground in defining its

properties. Following [236] an agent must be:

• Autonomous, which is the ability of an agent to control its actions as well as

its internal state.

• Social, an agent must be able to interact with other agents regardless of the

communication channel used (message passing or interactions through the en-

vironment).

• Reactive, an agent must be capable to act upon changes on the perceptions of

its environment.

• Proactive, an agent displays a goal-oriented behaviour so that its behaviour is

not only dictated by its environment and by its interactions but the agent is

pursuing its own goals.

Many of the divergences over agent’s definitions are due to which of those prop-

erties are emphasized the most.

2.1.1 Open and Closed Multi-Agents Systems

Most of multi-agent systems research still relies on the benevolent agent assumption

[124] that only applies when agents have common or non-conflicting goals. Benevo-

lent agents cooperate among them to indirectly resolve a complex task by fullfilling

their individual goals, which correspond to tasks that are simpler than the one ad-

dressed by the whole system. Thus, agents carry out a cooperative problem solving.

Since there is no conflict between agents’ and system’s goals, the sum of individual

efforts results in the solution of the complex task.

The design of such systems corresponds to the classical reductionist approach,

also referred to as top-down, where the original problem is decomposed into smaller

and simpler sub-problems until it is possible for an agent or a group of coordinated

agents to solve it. The correctness, stability and efficiency of the system can be

anticipated and enforced at design time.

The top-down approach that has provided many of the advances in science and

engineering has some drawbacks when applied to multi-agent systems. Top-down

design requires to have all possible states, transitions and interactions accounted

for at design time, therefore the system is closed, no element outside the ones that

were accounted for in the design can enter the system later. This same approach,

so powerful in the case of cooperative problem solving, leads to closed multi-agent

systems which fail to exploit the full potential of agent paradigm [115].
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The social level in closed systems is weak, and if one considers that communica-

tion does not necessarily imply sociality, one could argue that, in fact, closed systems

are inherently asocial. Furthermore, closed systems do not allow interactions outside

the original domain, because the interaction space must be known a priori. Closed

systems often take interactions as a cost to be minimized. Even autonomy is affected

in closed system, while agents still have control over their internal state, they cannot

interact beyond their designed interaction space. As a result agents are not really

autonomous at the social level, thus agents do not have designer autonomy [219].

For agents to exploit its full potential, they must be part of an open system,

where not all factors are known at design time. It is in the open system scenario

where the properties of the agent paradigm makes the difference between software

agents an other software paradigms [115, 124].

Unfortunately, the design of open system is far from trivial. A bottom-up ap-

proach is often regarded as the better methodology for open systems. Designers

must place the emphasis on building agents rather than building a system. Unlike

reductionism, the bottom-up approach does not resort to a recursive decomposition

of the original problem, but an aggregation of agents with certain skills or services

instead. Thus, the goals of agents are not sub-problems of the complex task intended

to revolve. Agents are granted with specialized capabilities and services which are

independent of system, then, the complex task can be attained by the interaction be-

tween these agents. Perhaps, the most illustrative example of this approach is using

reactive agents to solve routing and load balancing in telecommunications networks

[70, 131]. This is indeed a very complex problem that can be successfully addressed

with a myriad of very simple agents obeying very simple rules. The optimal, or

quasi-optimal, route is found by no agent in particular, but by the interactions

among all agents in the system.

Agents design with the bottom-up approach is well suited for open and distributed

domains; these agents build up a set of services that can be used for several purposes

[115]. This approach integrates agents in a wide-open environment, where agents

can interact with other agents that where not previously known. Unfortunately,

this approach also has downsides, mostly originated by the domain openness. Once

agents are social, that is, once they can wander and interact in an open environment,

at least two very important problems arise: 1) How can an agent know about the

services offered by other agents? And 2) How agents can rely on agents who are

not directly intended to interact with them? To answer the first question a lot of

research in service description is being carried on, for example, by the Semantic

Web community 1, creating languages such as DAML-S, RDF and OWL for service

description, ontology description and defining matchmaking processes. The second

1World Wide Web Consortium for Semantic Web, available on http://www.w3.org/2001/sw/
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question has to do with agents themselves. Some assumptions such as the benevolent

agent assumption [124], in which reductionism strongly relies, are no longer met in

a fully open environment.

2.1.2 Social Mechanisms in MAS

One of the characteristics of open domains is that the behaviour of the entities

escape the control of the designers of the systems. There is no certainty that one

agent is acting as it would be desired by the designers. The benevolence assumption

does not apply in open systems. A system that assumes that agents will always act

according to the common good but has no means to enforce the proper behaviours

is doomed to fail. One might expect the agents introduced by the designers to play

nice and to be trustworthy. However, this cannot be ensured for alien agents upon

which designers have no control whatsoever.

Open systems usually entails a social dilemma situation2, where agents will only

look for the common good as long as it serves their particular interests.

Let us illustrate it with an example. To resolve a resource allocation problem,

let us say in a logistic company, one might point to a multi-agent systems where

agents would model the different roles in the logistic pipeline. Agents might well

collaboratively resolve the problem by negotiating for the resources, even if it was

with a competitive negotiation. In any case, agents will always work as intended,

since they would always be constrained by the rules imposed by the designers. How-

ever, how can a good-behaviour be enforced when any alien agent can enter into the

system at any moment?

This situation should be very familiar to the reader as human society is one of

the best example of an open system. We humans do act collaboratively, not out of

altruism, but because of social mechanisms that bound us to do so. Human societies

have created a myriad of different mechanisms to reduce the inherent complexity and

the uncertainty that exist in society. Analogously to human societies, research on

multi-agent systems and artificial societies is in its way to create social mechanisms to

be applied to computational entities. For instance, institutions [218, 82, 194], norms

[57, 66, 219], conventions [221, 203], reputation [243, 196, 244], homophyly [111, 192,

116], and trust [245]. We will further describe some of these social mechanisms in

more detail in the following section.

Even if social mechanisms studied in social sciences can be called upon for build-

ing efficient and stable artificial societies, there is still a good deal to be understood

about those mechanisms before being able to apply them. Ironically, multi-agent sys-

2A social dilemma [62] arises when cooperation is Pareto efficient but may nevertheless fail

because individuals fear being “suckered” or are tempted to exploit the willingness of others to

cooperate. For a more precise game theoretic definition see [113].
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tems can contribute to a better understanding of the processes occurring in complex

social systems. Agent-based models or agent simulations [100, 99, 80] are a pow-

erful methodology to gain insight into these complex systems. Thus, agent models

can provide results and findings that can help to better understand complex social

processes that take place in society, and this knowledge can revert to the agents in

terms of more stable and efficient artificial societies.

2.1.3 Electronic Communities

Despite there are arguable differences between electronic communities and multi-

agent systems, we want to remark that those communities, regardless whether they

resort in agents or not, also require the use of social mechanisms of the same nature

of multi-agent systems.

Electronic communities evolve around a given area of activity or topic of inter-

est. The basis for their sustainability and persistence over time is the interchange of

services or information between community members. Typical interchanges include

commercial transactions3, knowledge exchange4, service interchange and support ex-

change 5 among many others. The members of this communities are usually people,

specially in the case of commercial electronic communities listed in the footnotes.

Research is being conducted into applying multi-agent systems to those communities,

in particular, in communities created for knowledge management and organizational

learning purposes [58, 133, 199, 217, 167]. Multi-agent system applied to communi-

ties usually rely on the personal agent concept, in which the agent is a representative

of a user — a person — within the community. This agent can operate while the

user is not present, for instance, gathering and filtering information tailored to the

needs and interests of the user.

Perhaps, the most straightforward example of electronic community is that in-

tended to the knowledge exchange based on collaborative systems. Although col-

laborative systems do not always resort to agents [3, 38, 102], they do still resort to

collaboration between the users of the community. This community might well be

open and the benevolence of its members be second guessed. Then, following the

same argumentation as in the case of multi-agent systems one can say the electronic

communities require social mechanisms. Actually, many of the systems that were

classified as electronic communities are now regarded as social software. Although

the name is rather commercial, it illustrates nonetheless the need to incorporate the

social dimension into the system. Thus, it is not strange to see that most of the

3ebay, available on http://www.ebay.com, amazon, available on amazon.com
4Expert-exchange, available on http://www.experts-exchange.com/, AskMe, available on

http://www.askmecorp.com/
5Linked In, available at https://www.linkedin.com/, Orkut http://www.orkut.com
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electronic communities apply rudimentary models of reputation and social network-

ing into their systems. Unfortunately, most of the social software, especially in the

case of commercial systems, only exploit their social dimension at a very superficial

level, or quoting Eagle and Pentland [75]: today’s social software isn’t very social.

By placing humans into the system many of the inherent short-comings of multi-

agent systems are wizened. Important open problems such as service discovery, inte-

gration and semantics that draw much attention of the multi-agent systems research

are not so acute in the case of electronic communities. However, other problems,

specially those related to the benevolence assumption and the openness of the sys-

tem still remain. In sociological literature cohesive social structures and trust are

often seen as being almost equivalent [42]. Weber in the 1920s observed that the

exchange stock market form cohesive societies where trust reaches high levels. Rel-

evant factors that favor cohesion in communities (we refer here to communities in

the conventional sense, such as the neighbourhood, the trade-union, the city) are

distance and the high cost of communication. However, these constraints are no

longer valid in electronic communities, the consolidation of the Internet has reduced

the cost of communications, and distance is not as determinant as it was before.

Then, how can trust emerge in a world-wide community of people that might not

have any interaction in the physical world? Those electronic communities require

to put the social dimension into the equation if the system is ever to be fully func-

tional. In fact, this is already happening to a certain extent: would you buy an item

from e-bay to someone with a negative reputation? Or when choosing a book from

amazon, would you follow the advice of a total stranger rather than someone close

to you? Artificial societies, whether they are composed of computational entities

alone or composed of people interacting through the Web need to dig further into

the integration of the social level into the system.

2.2 Trust and Reputation

As mentioned in the previous sections, we must resort to social mechanisms such

as trust and reputation in order to reduce the uncertainty and complexity of open

systems where the benevolence assumption does not hold. Social mechanisms help

agents in their decision making process, and are intended to help the system maintain

a cooperative and coordinated regime. Needless to say that reputation and trust has

been studied throughfully in social sciences [191, 144, 42]. However, the profiferation

of open artificial societies extended the study of these social mechanisms to the area

of computation.
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Trust

Gambetta [95] defined trust as a particular level of subjective probability with which

an agent will perform a particular action before the action is performed. Trust be-

tween two agents is built on the outcome of interactions, usually positive interactions

in which both agents benefit from the interaction. Certain level of trust is required to

maintain cooperative regimes under non-ideal circumstances such as those found in

open systems. A straightforward example would be a prisoners’ dilemma scenario:

the ideal strategy for that game, as shown by Axelrod [16], is tit-for-tat, which is

based on direct reciprocity. Under the tit-for-tat strategy, if an agent’s counterpart

played nice the agent will reciprocate, otherwise the agent will defect. Thus, after a

mutually positive interaction the agents build up trust to continue cooperation until

the trust is betrayed by a defection. However, in this example the concept of trust is

very weak since it only depends on the last interaction. As a consequence, random

errors would break down cooperation. If an agent would have had a genuine trust

with its counterpart it would wait some rounds before changing to defection. For

example, it would spare a certain number of defections believing that its counter-

part was not actually defecting, but defections were due to an accident. The version

of tit-for-tat that incorporates trust, albeit at a basic level, is known as generous

tit-for-tat or tit-for-two-tats. This strategy forgives the first defection assuming it

was an accident. Tit-for-two-tats (trust) clearly outperforms tit-for-tat (no trust,

just reciprocity) in a noisy environment.

Reputation

According to Misztal [165] reputation helps us to manage the complexity of social

life by singling out trustworthy people in whose interests it is to meet promises.

Actually, reputation, if deserved, reduces complexity in many ways: 1) it reduces

the number of agents worth interacting with. So, reputation can be used as a filter.

2) Reputation ensures, to a certain extent, a positive interaction. 3) Reputation

promotes cooperation under the menace of getting a negative review.

Although reputation and trust are seen as critical factors in order to manage

complexity, there is no general and cross-domain model for reputation. The advan-

tages described by Misztal are not free from drawbacks. For instance, the filtering

induced by reputation can bring the system to a sub-optimal state where latecomer

agents, despite offering better services or better reliability, have no visibility. To

avoid this problem, one might suggest that reputation should only report negative

interactions so that agents have a fair starting point, but then the problem of cheap

identities arises. If changing your identity is affordable, free-riders with a hit-and-

run strategy proliferate [93]. They would keep defecting until their reputation were

compromised and then they would change their identity for a brand-new one ready
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for a fresh new round of cheating.

Yet another drawback is that the measure of the reputation could be tampered,

specially when the reputation model resorts to explicit feedback to estimate the

reputation of a given agent. Reputation is subjected to possible collusions of a group

of agents trying to undermine the reputation model of the system or the reputation

of a particular agent (probably a competitor). Another type of collusion is the

artificial increase of reputation of one agent who has a group of cooperator agents

that report inexistent positive interactions with it. In doing so, the agent would

appear as a trustworthy agent to the whole community although it only interacted

with its accomplices [238, 65, 164, 244]. Yet another problem, especially acute when

the reputation model is completely distributed, is correlated evidences. This occurs

when the same interaction is reported several times from different sources [196], as a

consequence, the reputation measure is altered by accounting the same interaction

more than once.

Most reputation and trust models used in multi-agent systems [243, 244, 245,

196, 167] are devoted to the domain of electronic commerce, where trust and reputa-

tion are basic since business need to be run in a trustworthy environment. Another

domain where reputation models are usually applied is in peer-to-peer file-sharing

systems, where reputation and trust are used to minimize free-riding and to avoid

profiferation of fake files [238, 128, 111]. Another example of a domain where trust

and reputation has been used is in recommender and collaborative systems, where

reputation usually refers to people or to agents that act on their behalf in an elec-

tronic community. Thus, reputation allows agents to filter the good from the bad,

finding the reliable and knowledgeable people, agents or pieces of information in the

system [130, 133, 1].

Many models have been suggested to implement the concepts of reputation and

trust in on-line systems, multi-agent systems and peer-to-peer systems. Sabater

and Sierra [197] did a comprehensive review of computational models of trust and

reputation from an agent-based perspective.

Perhaps the most wounding criticism to trust and reputation research is the

proliferation of ad-hoc models which are weakly grounded in social theory. Most

reputation models address a particular scenario of a given domain focusing on the

particularities of the domain rather than addressing the underlying concept of repu-

tation. We would like to say that although we also would agree in the lack of social

theory and cognitive grounding of most models, we do not believe it is possible

to create a general cross-domain reputation model, as it is not possible in human

societies either. Another criticism to trust and reputation models is the lack of in-

tegration between models, making comparison between different models unfeasible.

Researchers in the trust and reputation area are already addressing this issue, for

instance by creating the ART competition [94].
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A common trait shared by most reputation models is that they rely on some form

of feedback collection after an interaction, for example, in order to rate satisfaction

after transactions in e-commerce environments or to rate quality and usefulness of

recommendation in a recommender system. Besides the fact that feedback might

be false or unfair, there are more problems related to feedback: a) it is sometimes

difficult to evaluate the quality of an action or a piece of information, and b) it

is too much dependent on collaboration, the lack of which is a known problem in

collaborative environments [38]. All these problems, which are a lesson from the

recommender and collaborative systems, are too often disregarded in reputation

and trust models, with some exceptions [123].

We present in chapter 4 a mechanism that does not rely on feedback but on the

position of an agent within its social network. Therefore, a reputation measure can

be inferred by analyzing the topology of the network of interactions between the

agents. Agents who are well known and highly regarded by the rest of agents of the

community can be easily identified as highly connected nodes in the social network,

in a similar fashion as relevant Web pages are identified by analyzing the structure

of the Web [183, 137]. This relational information could serve as the basis for a

ranking mechanism instead of having to resort to feedback or ratings provided by

individual agents.

2.3 Norms and Conventions

Other social mechanisms borrowed from sociology are norms and conventions [214].

In fact, these concepts do not appear only in sociology but they are used and studied

in other social sciences such as legal theory, economics, psychology, philosophy and

decision theory. Different disciplines came up with different points of view about

norms, Verhagen [219] provided a comprehensive description of norms from different

perspectives.

Analogously to trust and reputation, multi-agent systems researchers as well as

other fields of distributed artificial intelligence have investigated the feasibility of

the use of norms, conventions and laws in multi-agents systems in order to simplify

the agent decision-making process and to improve the effectiveness and performance

of the overall system [221].

Social norms are usually meant as solutions to problems of cooperation which are

rooted in the conflict between common and individual good. Multi-agent systems

are no different since they need to coordinate and/or cooperate in order to work as

intended, resolving the conflicts of interests among agents [57].

Even within multi-agent research there are different views on norms depending on

the methodological approach followed. The formal logic approaches intend to define

norms using some modal logic, such as deontic logic [66, 218]. The approaches from
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cognitive science focuses on the internalization of the concept of norm into the agents

rational process [57, 54, 48]. There are also approaches to social norms grounded

on game-theory, in which norms are often seen as the maintenance of a cooperative

regime in a social dilemma situation [214, 16, 17, 27]. Despite divergences, there

is a baseline agreement: a norm is a restriction on the set of actions available

to agents. When a social norm is restricted to one particular action it is called

a convention [203]. Walker [221] defined norms and conventions as behavioural

constraints. Conte and Castelfranchi [54] agreed on the interpretation of norms as

behavioural constraints, although they also considered norms as ends — or goals —

that agents try to fulfill.

In this thesis we restrict our work to a computational study of social norms

and conventions. This approach is focused on studying the dynamics of a system

based on coordination, cooperation or evolutionary games by means of agent-based

simulations. These simulations show how the performance of the overall system is

improved by the adoption of norms and conventions. We connect with a tradition

of studies such as the control of aggression [55], the reduction of inequality among

agents [195] or the facilitation of emergence of cooperation in the prisoner’s dilemma

[51] to cite only a few.

In most of these studies, the effects of norms have been shown to act as mecha-

nisms that improve cooperation among agents within a system. However, there are

still open issues as to how norms spread. Usually the diffusion of norms relies on

the imitation of successful strategies [51]. However, in real life, norms do not only

spread through imitation. As the advocates for cognitive-grounded norms would

put it: diffusion is also due to recognition of norms as such by people (or agents)

and an active defense of norms on the part of norm-observers [48]. Thus, norms are

not only to be followed by agents but these agents should urge other agents to do

so, introducing a second order choice; that is whether to comply with a norm or not

and whether to urge other agents to do so. Apparently, under some settings, the

more normative behaviour there is in the system the more successful the system is

[48].

Another key issue in the understanding of norms is to decide on the method

by which they can come to exist within a society. There are two antagonistic

approaches. Off-line design assumes that social norms are hard-coded into the

agents [55, 201]. The counterpart relies on spreading and adopting processes that

may eventually lead to a normative behaviour, that is the emergence of a norm

[221, 51, 63, 135, 89].

Obviously, the off-line design is not suited for open systems, in which the com-

pliance of all the agents to the norms cannot be guaranteed by design. We are more

interested in the second approach, where emergence of norms and conventions is

the key. In this setting, agents should be able to choose the appropriate behaviour



2.4. AGENT BASED MODELLING 25

despite the fact that its own decision making process is based upon imperfect and

local information. By doing so, the complexity is transferred to the behaviour —

strategy — update function [221]. Most research on computational study of norms

has focused on conventions rather than on norms, since coordination games, where

there are no social dilemmas [62], are simpler than cooperation games. As for norms,

there is still much work to be done to explain how they do emerge, become estab-

lished, internalized and eventually change [195]. Vergahen [219] did an interesting

work about the internalization and spreading of norms; however emergence was

not addressed. It is understandable that emergence of norms is not a main issue

within the MAS community since there is still much research to be done on their

representation, diffusion and specially on their compliance.

The role played by the topology of the underlying social network of a multi-

agent system in the emergence of a norms and conventions has not been studied

in depth either. In the nineties, some researchers such as Kittock [135], Shoham

and Tennenholtz [203] and Cohen et al. [51] pointed out that topology was a key

factor for the efficiency in the emergence of conventions. However, it was not until

some years later that the effect of topology attracted the interest of more researchers

working in norms and conventions [2, 63]. The tipping point was the finding that

components of real systems exhibit non-trivial interaction patterns, which could be

modelled as a network. This field known as complex networks [11, 232, 4] introduced

a new class of networks that had properties that were not present in the idealized

networks —- random, complete or regular networks — used to model the pattern of

interaction between agents.

The contribution of this thesis goes into this strand of research. In chapter 6

we show how certain patterns of interactions among agents influence the time for a

convention to be established. Moreover, in chapter 7, we show that the topology of

the interactions also affects which convention is finally agreed upon in the case of

dissimilar conventions.

2.4 Agent Based Modelling

So far we have presented how research in multi-agent system has turned to social

science and borrowed concepts such as trust, reputation, norms and conventions.

Those concepts are needed to design and build open systems where agents are not

bounded by the benevolence assumption, thus, exploiting the multi-agent paradigm

to its full potential. At the same time, researchers in social science have turned to

the multi-agent systems paradigm as a powerful approach to be applied to problems

involving complex social dynamics such as emergent social norms, social structure

and social change.

Traditionally, sociologists have tried to understand social life as a structured
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system of institutions and norms that shape individual behaviour from the top-

down. In contrast, some sociologists suspect that much of social life emerges from

the bottom-up [87, 18, 155, 158, 99, 56, 19, 79, 45]. To that purpose, sociologists

have adopted an alternative modelling tool which was first developed by computer

science and artificial intelligence: Agent Based Modeling (ABM). Software-based

agents systems try to solve complex tasks by using a set of autonomous agents.

Once you remove the word software there are many similarities between multi-agent

systems and societies of humans. Moreover, the agent paradigm also imposes certain

constraints such as imperfect and local information as well as bounded rationality

[205]. Those properties are somehow seen in human nature, so it is no wonder

that sociologists have taken this approach to be an interesting field in order to gain

further understanding of complex social dynamics.

Although the main goals of both research communities differ, there is common

ground for a cross-fertilization of both disciplines. Multi-agent researchers are ap-

plying social mechanisms in order to improve the stability and performance of their

systems. Sociologists are applying the agent paradigm as a framework to study and

to explain certain social phenomena.

Epstein [80] proposes agent based simulation for explaining macroscopic social

patterns by generating — or as he says “growing” — them in agent models. Ac-

cording to him, the main contribution of agent based systems into social science is

to facilitate explanation. Agent based modeling is not the only framework to tackle

complex social problems but it is probably the latest and it is gaining momentum

thanks to its explanatory power [79, 19]. Game theory, evolutionary game theory,

mathematical economics, rational choice theory, political science, theories of learning

in strategic interaction, socio-physics and statistical models have been continuously

improving and being applied to wider domains.

However, those methods have in their analytical foundation its strongest and

weakest point. The analytical approach offers sound formal proof but the price to

pay is that the domain is rather limited due to the imposed constraints necessary to

achieve the analytical solution. Thus, analytical models yet beautiful, are difficult

to be applied in realistic social systems. For instance, a completely analytical game

theory approach requires to impose unrealistic patterns of interactions so that the

formal proof, i.e. to find the Nash equilibrium (or a distinguished Nash equilibrium)

of some game, can be derived. Those analytical demonstrations are only possible in

confined domains and imposing strong limiting assumptions which do not correspond

to the complex social subject to study. Therefore, their explanatory power, which is

unarguable on paper, is diminished when confronted with reality, where most of the

assumptions are not meet. Moreover, experimental results often do not match the

results predicted by the analytical solution revealing that the part of the problem

left out by the assumption was indeed relevant [42].
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Epstein, in [78], goes even further proposing agent-based models as a new paradigm:

“...it is no sufficient to demonstrate that if a society of rational (homo economicus)

agents were places in the pattern, no individual would unilaterally depart, which is

the Nash equilibrium condition. Rather, to explain a pattern, one must show how

a population of cognitively plausible agents, interacting under plausible rules, could

actually arrive at the pattern on time scales of interest”.

Agent based models using computational simulations are flourishing due both

to limitations of formal and analytical approaches and to the rise of computing

power. Furthermore, agent based modeling is a formal method that educes in a

systematic and rigorous way macroscopic implications (at the level of a society)

from assumptions about the microscopic level (the behaviour of the agent).

Some researchers, specially those fond of mathematical “hard” science, are skep-

tical about agent based models. Some of the main criticisms are enumerated and

argued in [78]. Epistemological concerns of agent-based modelling are also addressed

in [26, 171, 91]. Most of the criticisms, however, are not aimed at the agent-based

modeling framework itself. As every discipline in its early stages, agent-based mod-

elling is affected by certain degree of unrigorousness by some of its proponents. To

deal with those problems, which are not due to the framework itself but to some

abuses of it, prominent researches on the field have proposed a set of methodological

principles [87] as well as some books of best practice [100].

2.4.1 Rigorousness of Agent Based Computational Models

Flache and Macy [87] proposed a set of methodological principles. Some of those

principles are summarized below.

• The model must be grounded on existing sociological theory. Simulation pro-

vide a rigorous methodology for studying effect of different microfoundations

on macro dynamics. The model must not be based on observed phenomena

but from well grounded theory. Then, two important related pitfalls — often

used against agent based models — can be avoided: 1) the desired empirical

patterns can be generated by a large set of different models, therefore, it is

possible to create a model that generates any empirical pattern. 2) if a model

generates the desired empirical pattern but the mechanism responsible remains

unknown (without theoretical backup), therefore, the model does not have any

explanatory power.

• The model should be as simple as possible. Pressure to make models more

realistic (and agents more cognitively sophisticated) can become as hard to

interpret as the natural phenomena they try to explain.
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• Experimentation should be theoretically motivated. The space of parameters

must be explored carefully and systematically. Furthermore, the manipulation

of parameters must be theoretically motivated.

• The results should be replicated independently. In order to guarantee the va-

lidity of the model its implementation should be replicated, and systematically

checked. This is an important step since the models whose replication have

been shown to produce different results are often used as an example against

the rigourousness of agent based models. As a defense against these criticism

it would suffice to say that the author of the experiment whose results are not

replicable is the one to be blamed, not the experimental tool.

• The results must be robust. The statistical robustness and significance of the

results must be ensured.

• Compare and align models. When possible, the model should be compared to

similar models in the literature. This would help to validate the replicability of

models already published. Furthermore, alignment would help to identify those

assumptions that cause differences in the behaviour of the models. Ideally, this

would lead to the theoretical integration of competing models and, eventually,

to a more general model.

The research presented in this thesis is partially based in agent-based models

and simulations (chapters 6 to 8). A close inspection of the models reveals that they

meet the methodological principles proposed by Flache and Macy. We specially

stressed the independent replication of the results yielded by our models by making

our models available to other researchers as well as by including the pseudo-code of

the models (see appendix A).



Chapter 3

Social Structures and Networks

In the previous chapter the discussion has focused on the agent level, the individuals

of artificial societies. In this chapter the focus is on the social structure where

the agents are embedded. We will briefly discuss the approach to social structure

from three disciplines: computer science, sociology and physics. Later on we will

present some concepts on networks which will be used extensively in the forthcoming

chapters.

3.1 Social Network Analysis

A social network is a map of all relevant ties between actors in a group [226, 225,

200, 233]. Nodes are the individual actors and ties - edges - are the social relation-

ships between the actors. These relations can express a wide range of interactions:

friendship, acquaintanceship, trading relations, support exchange, collaboration and

many others.

Modern social networks analysis (SNA) dates from the 60’s and it is the result of

the convergence of earlier traditions, including sociometric analysis, group dynamics

[169] and social anthropology [25]. These trends took a social approach to analysis

of their particular domains: they transformed interactions and, in particular, the

structure of those interactions into explanatory mechanisms that accounted for the

processes taking place in the society or the group under examination. By doing so

they brought together mathematics - especially graph theory - and social theory.

After some years, a well-developed methodology of social network analysis was con-

solidated. Scott in chapter 2 of [200] and Wasserman and Faust in chapter 1 of [225]

review how that development took place.

Social network analysis studies the influence of the social structure on social

order. Its practitioners departed from traditional sociological studies to which the

only thing that matters is the attributes of individual actors. Social network analysis

29
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produces an alternate view where the focus is placed on the relationships and ties

between individuals rather than on the attributes of individuals themselves. Social

network theory has come a long way in explaining social processes that classical

sociology failed to explain.

For instance, influence within organizations depends more on the centrality of

the individual rather than its actual job title [107]. Centrality1; it measures how

influential individuals are in, for example, the transmission of information, and it

depends on being connected to individuals who are influential as well.

Weak ties, on the other hand, are those links that connect people socially dis-

tant, that is, individuals who belong to different social circles and therefore manage

different types of information. Granovetter found that weak ties [106] gave access

to many useful resources for actors involved in processes such as job hunting: in-

formation on new jobs is better obtained from sources who do not belong to the

same social group and therefore do not manage the same redundant information.

The mechanism brought by weak ties is alternative, yet complementary, to that of

betweenness.

Related to this, success for firms or in job performance also depends heavily

on the relationships between actors that belong to different departments in the

organizational structure. If an individual has relationships in two different groups

he has access to resources which are not accessible for an actor with relationships

in a single group. Therefore, individuals with more diverse relationships have a

competitive advantage when compared to those embedded in more homogeneous

groups [41].

Social capital [151] focuses precisely on this phenomenon. Social capital com-

prises the pool of resources available to an individual through its social network.

The concept is defined in opposition to human capital, which is the amount of re-

sources acquired by an individual in the course of training and experience. Social

capital is not embedded in individuals but in their connections. And, being a form of

capital, it provides returns that would be unattainable in its absence. This is what

folk-wisdom calls networking. Social capital affects both individuals and groups.

Putman [189], for example, related social capital to the health of civic movements

and democracy. Even if this work has arisen some methodological concerns, it pro-

vides a good argument about the role networks play in facilitating certain outcomes

that are crucial for the workings of society [103].

Social network theory has also been applied to innovation diffusion [215]. The

structure of the social network provides insights into how new knowledge or trends

will spread through a society and how fast. If members of a society form a close-

1There are many definitions of centrality, although the most common is the betweenness cen-

trality [92]. Betweenness centrality of node i is formally defined as the number of shortest paths

between any two nodes that contains node i.
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knit group, with a few members who belong to more than one group, then the

society is closed and innovation spreads very slowly. Conversely, if society contains

many individuals who act as bridges between groups, innovation and knowledge will

spread much faster. Thus, social network analysis tells us that open societies favor

innovation. However, it also warn us that too many relations outside the group

might eventually destroy the concept of social group itself, and as a consequence,

endanger cooperation between members due to lack of trust [42, 41].

There are two main streams of research within SNA. One of them is based on

empirical research, where information is mostly gathered through questionnaires and

interviews which are analyzed by using social network analysis methods. This field-

study oriented approach is very common due to the proximity of SNA to classical

sociological studies. However, networks obtained by this approach tend to be small,

since collecting data on bigger networks would require a lot of resources (time and

money). As a consequence, the results of this approach do not confront macro

properties of the networks and how they could affect the actor’s behaviour. Instead,

they focus on egocentric networks, where society is perceived as a composition of

relations of many individual actors. This approach provides empirical results that

either back up or question social theory, especially when longitudinal data is collected

to better understand the evolution of a particular social group or system.

The other main stream within SNA is focused on methodology and analytical

models. Unfortunately, most standard statistical methods cannot be directly applied

to SNA because of the existence of mutual dependency between actors and the ties

in a social network. The creation of statistically sound methods forms an important

part of the research conducted by social network researchers [206, 207, 68].

Because of the statistical complexity involved in the analysis of the data and the

difficulty to get large datasets, most social network studies end up as comparisons

between different static networks and can only be applied in descriptive analysis.

Stokman and Doreian stated in [211, 69] that important questions such as evolution

and dynamics were mainly neglected in SNA. Nevertheless, this is no longer true

since recent work in SNA is just addressing the evolution and dynamics within social

networks [215, 193, 208, 210]. Addressing these issues is a necessary step towards

a better understanding of the emergence of social order and of the interdependency

of the individual actor and society as a whole. However, some of the work on

dynamics and evolution of social networks rely on analytical approaches, mainly

statistics, which suffers from the same drawbacks as game-theoretical approaches

(see section 1.2): In order to obtain an analytical solution strong assumptions or

limited domains have to be added into the model. Thus, unlike economics or decision

theory based on game theory, most of the research on complex systems dynamics

cannot be directly applied to SNA.

As we hinted in section 2.4, agent based models might offer a solution to over-
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come these problems. Physics is also contributing to social network research by

applying their own methodology for complex systems to very large social networks.

Unfortunately, the core of social network analysis is not very fond2 neither of the

physics approach to social networks - sometimes refereed to as socio-physics - nor of

the agent based models.

3.2 Patterns in Networks

The use of networks as a representation of the interactions between the entities of a

system is nothing new. For instance, Biology [168, 187] has extensively used food-

webs to better understand ecosystems. Networks of firms are commonly studied in

Economics and Management [20, 222, 140]. Organizational theory [166, 8, 46] has

used networks - mostly hierarchies - to understand the processes occurring within

a company. Sociology, together with other social sciences, developed social network

analysis as a framework to explain social processes by the relationships between

people. There are many examples in different disciplines where networks are used

as a means to represent the system subjected to study.

The networks studied, however, were usually very small networks, ranging from

a dozens to a few hundreds nodes maximum. As a consequence, statistical analysis

of networks was limited to small scale networks. Furthermore, there was little intu-

ition of the fact that networks modelling different systems might exhibit non-trivial

statistical regularities. Therefore cross-domain studies on networks did not exist,

instead each discipline focused on their particular set of interests.

Nevertheless, during the late nineties the availability of huge networks, such

as the Web or the Internet, together with the rise of computing power lead to a

collective effort to gather and analyze networks from very different domains. The

research on networks underwent a change and expanded to statistical analysis of

large-scale networks. Using methodologies borrowed from Physics such as statistical

mechanics, which had been proven to be very useful.

Many distinct systems were modelled as networks. Their analysis unveiled strik-

ing regularities in network properties despite of their different nature. Tables 3.1 and

3.2 summarize the characteristics of several empirical networks from very different

systems.

Most analyzed networks, regardless of the system they modelled, exhibited sur-

prising invariant characteristics. For instance, the average path length was surpris-

ingly low, networks were formed from cliques of highly interconnected nodes, the

distribution of connectivity had the so called long tail effect. This long tail is a

2To further illustrate this heated debate we recommend to visit the blog entry in Crooked Timber

regarding this issue. http://crookedtimber.org/2005/05/19/isolated-social-networkers/
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situation in which a few nodes had a high connectivity while most nodes had a rel-

atively low connectivity. The characteristics found in empirical networks endow the

networks with very interesting properties such as efficiency in propagation, commu-

nity structure, high redundancy, resilience against random errors, and many others

which will be discussed in section 3.2.1.

The question of why such different systems display very similar interaction pat-

terns attracted the interest of many researchers. What do systems composed by

web pages, proteins in living organisms, scientific communities, routers on the Inter-

net, movie actors, phone calls, trophic relations in an ecosystem, firms in the stock

exchange market or neurons in the brain, have in common? The systems are very

different in nature by many parameters: social and non-social systems, artificial

(human made) and natural systems, cognitive and non-cognitives entities (here we

refer to the individuals the system is composed of).

However, in spite of the differences in nature of these systems, the networks

that modeled their interactions exhibited some strikingly similar patterns. They

all displayed non-trivial wiring schemes that have been given the name of complex

networks.

It is even more surprising the fact that these patterns have a direct effect, mostly

positive, on very important macroscopic processes taking place in these systems,

such as diffusion and robustness. Systems have somehow organized themselves to

a setting that contributes to several interesting properties, from the efficiency of

information diffusion to the resilience against random errors. Furthermore, this

phenomenon is observed in many different systems that have nothing in common

besides the fact that they are build up of autonomous entities without any central

planner or designer.

Aside from the hundreds of research papers and books, there are several books

targeting a more general audience [230, 40, 21, 119]. Such books are always an

indication of ground-breaking findings and stipulate the relevance of the field.

3.2.1 Summary of Complex Networks

This section is a brief overview of the main characteristics, properties and models

of complex networks which are discussed in the rest of this thesis. For a more

comprehensive review we strongly suggest any of these excellent reviews and books

about complex networks [11, 175, 71, 186].

Characteristics

These are the main characteristics taken into account when studying complex net-

works,
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• Degree distribution. The degree of a node i is the number of connections

(edges) of that node (ki). Degree is often called connectivity. In the case of

directed networks we must distinguish between in-degree and out-degree. The

first being the number of connections pointing towards the node and the later

being the number of connections that have their origin in the node. Not all

the nodes have the same degree. The spread of degrees is characterized by a

distribution function P (k). For complex networks the connectivity distribution

can be classified into two groups: 1) the degree distribution is a power-law:

P (k) ∼ k−γ , (such networks are called scale free [22]). Or 2) the degree

distribution is an exponential: P (k) ∼ Ae−k. In both cases the frequency

per degree k decreases rapidly. In the later case the probability of having

nodes with an extremely large degree is not negligible. Furthermore, power-

law distributions can display an exponential cut-off due to finite size effects

[181, 186]. See figure 3.1 for a graphical representation of different connectivity

distributions.

• Diameter (d) is the maximal distance between any pair of nodes. Distance

is the number of edges of the path between two nodes, roughly speaking, the

number of hops to get from node i to node j. In the case that the network

is a disconnected one (a network is made up of several isolated clusters, also

referred to as connected components) the diameter is often defined as the

maximum diameter of its clusters. However, in strict terms the diameter of a

disconnected network is infinite.

• Average path length (l), also known as characteristic path length, is the average

distance between any pair of nodes. For random networks the average path

length as well as the diameter (since it is the length of the longest path)

scales logarithmically with the size. Formally, lrand ∼ ln(N)
ln(〈k〉) . This implies

that even for very large networks we expect to find a path between any two

pairs of nodes of reasonable length. Networks where the average path scales

more slowly than the actual size for the network are required for an efficient

communication. Complex networks also scale logarithmically with the size of

the network.

• Clustering coefficient (c) measures the cliquishness of a network. The network

clustering coefficient is the average clustering coefficient of all nodes of the

networks, c =
∑N

1 ci and ci = 2Ei

ki(ki−1) , where i is a node having a connectivity

ki, and Ei is the number of edges that exist between the nodes that have an

edge with i. Roughly speaking, this coefficient is the ratio between the number

of edges contained in the set composed of the neighbours of a node and all the

possible edges that that set could possible contain. The clustering coefficient
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ranges from zero to one and can be intuitively be seen as the probability

that edge jz exists provided that edges ij and iz exist. Thus, the clustering

coefficient is a measure of transitivity (or triangular closure) among the nodes

of the network. When the clustering coefficient is high, which is the case

for complex networks, it means that a community structure exists. There are

groups of nodes that are densely connected with members of the group forming

a clique.

• Degree correlations measures how nodes are connected with each other in terms

of their degree. Correlations can be either positive or negative. If correlation

value is close to 0 there exist no correlation. A negative correlation means that

high-degree nodes tend to connect to low-degree nodes and vice versa, hence, the

mixing pattern of nodes is dissortative. On the other hand, when correlation is

positive high-degree nodes tend to connect to high-degree nodes, and low-degree

nodes tend to connect to low-degree nodes. Therefore, positive correlation

implies that nodes tend to pair up to nodes of the same kind, forming an

assortative mixing pattern. Pastor-Satorras et al [184] proposed to measure

degree correlation based upon the average degree of the neighbours of a node

as a function of the degree k of the given node. Newman [174] proposed an

even more compact measurement, called assortativeness, based on calculating

the Pearson correlation coefficient of the degrees at both ends of the edges

[174]. Degree correlation has been found in many empirical complex networks.

The striking fact about correlation is that only those complex networks that

are also social networks display a positive correlation. This leads to think that

formation of social networks differs from formation of other complex networks

since it is governed by an assortative mixing process.

Tables 3.1 and 3.2 summarize the characteristics of several empirical complex

networks. These tables have been extracted from Albert and Barabási [11]. Table

3.1 is focused on the average path length and the clustering coefficient of empirical

complex networks compared to those obtained from random networks.

Table 3.2 focuses on the connectivity distribution of the empirical complex net-

works, which follows a power-law of different exponents depending on the network.

Table 3.2 also summarizes the average path length found in the empirical network

compared to the expected average path length of a random network or an analytical

power-law network.

Properties of Complex Networks

Complex networks exhibit some properties that are remarkable, specially if one takes

into account that these networks are the results of the self-organization of a myriad
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Figure 3.1: Comparison between connectivity distribution and analytical predictions. The

left sub-figure corresponds to the connectivity distribution of a random network of 10000

nodes and connection probability p = 0.002 using the Erdös-Rény model [81]. The average

connectivity degree is 〈k〉 = 20. The plot compares the normalized frequency of nodes

with connectivity Nk

N
with the expected value of a Poisson distribution E(Nk)

N
(dashed line).

The central figure corresponds to a power-law network generated with the Barabási-Albert

model [22]. The network has the same number of nodes and edges as in the case of the

previous random network. We can observer the differences of connectivity distribution

between random and power-law networks. The dashed line correspond to the analytical

prediction P (k) ∼ k−3. The right sub-figure is the cumulative connectivity distribution

Pc(k) of the central sub-figure. We can observe how the potential distribution has an

exponential cut-off due to finite size effect

Table 3.1: Characteristics of several empirical complex networks. Size is the number

of nodes of the graph, 〈k〉 is the average node degree, l is the average path length,

and C is the clustering coefficient. Lrand and Crand are the average path length and

the clustering coefficient of a random graph of the same size and the same average

degree. After Albert and Barabási [11].
Network Size 〈k〉 l lrand C Crand

WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078 0.00023

Internet, domain level 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3 0.001

Movie actors 225226 61 3.65 2.99 0.79 0.00027

LANL co-authorship 52909 9.7 5.9 4.79 0.43 1.8 × 10−4

MEDLINE co-authorship 1520251 18.1 4.6 4.91 0.066 1.1 × 10−5

SPIRES co-authorship 56627 173 4.0 2.12 0.726 0.003

NCSTRL co-authorship 11994 3.59 9.7 7.34 0.496 3 × 10−4

Math. co-authorship 70975 3.9 9.5 8.2 0.59 5.4 × 10−5

Neurosci. co-authorship. 209293 11.5 6 5.01 0.76 5.5 × 10−5

E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026

E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06

Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03

Words, co-occurence 460902 70.13 2.67 3.03 0.437 0.0001

Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006

Power grid 4941 2.67 18.7 12.4 0.08 0.005

C. Elegans 282 14 2.65 2.25 0.28 0.05
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Table 3.2: Scaling exponents characterizing the degree distribution of several scale-

free networks. Size is the number of nodes of the graph, 〈k〉 is the average degree,

κ is the cut-off for the power-law scaling. For directed networks, the indegree γin

and the outdegree γout has been listed separately. The columns lreal, lrand, and lpow

compare the average path length of real networks with power-law degree distribution

and the predictions of random-graph theory. After Albert and Barabási [11].
Network Size 〈k〉 κ γout γin lreal lrand lpow

WWW 325729 4.51 900 2.45 2.1 11.2 9.32 4.77

WWW 4 × 107 7 2.38 2.1

WWW 2 × 108 7.5 4000 2.72 2.1 16 8.85 7.61

WWW site 260000 1.94

Internet, domain 3015-4389 3.42-3.76 30-40 2.1-2.2 2.1-2.2 4 6.3 5.2

Internet, router 3888 2.57 30 2.48 2.48 12.15 8.75 7.67

Internet, router 150000 2.66 60 2.4 2.4 11 12.8 7.47

Movie actors 212250 28.78 900 2.3 2.3 4.54 3.65 4.01

Co-authors, SPIRES 56627 173 1100 1.2 1.2 4 2.12 1.95

Co-authors, neuro. 209293 11.54 400 2.1 2.1 6 5.01 3.86

Co-authors, math. 70975 3.9 120 2.5 2.5 9.5 8.2 6.53

Sexual contacts 2810 3.4 3.4

Metabolic, C.Elegans 778 7.4 110 2.2 2.2 3.2 3.32 2.89

Protein, S.cerev. 1870 2.39 2.4 2.4

Ythan estuary 134 8.7 35 1.05 1.05 2.42 2.26 1.71

Silwood Park 154 4.75 27 1.13 1.13 3.4 3.23 2

Citation 783339 8.57 3

Phone call 53 × 106 3.16 2.1 2.1

Words, co-occurence 460902 70.13 2.7 2.7

Words, synonyms 22311 13.48 2.8 2.8

of autonomous nodes interacting with each other without planning, instead of being

the result of any organized design process.

One of the more interesting properties of complex graphs it is the so-called small

world effect, coined by Milgram’s experiment in the 60’s [163]. Milgram’s work

empirically showed how people were much closely connected than expected. The

popular expression of degrees of separation — everybody can contact everybody else

in the world only by using acquaintances — is derived from his work. This surprising

effect has been found in empirical analysis of complex networks, and it is indeed a

characteristic feature of them. For a network to be small world its average path

length and diameter must be low, even for very large networks. Thus, it is possible

for a node to reach any other node in the network within few hops.

Random networks have a short diameter and average path length, in fact, it

increases logarithmically with the size of the network. A direct consequence of having

a low average path length is efficiency in processes of propagation and diffusion, since

the path between any two nodes is short. Complex networks behave as random
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networks, therefore, they are very efficient in propagation: from innovation [60]

through human diseases [185] to computer viruses [178]

However, average path length is not the only factor to be taken into account.

Unlike average path length, the clustering coefficient of complex networks and ran-

dom networks is completely different. Random networks have no internal structure,

which results on a low clustering coefficient (tends to zero as network size grows). On

the other hand, complex networks, specially social networks, often exhibit a strong

community structure. The pattern of interaction is not random, it is the result of

some undergoing process. This process might correspond to the transitivity studied

in social networks analysis and sociological theory. In short, small world networks

— those networks that display the small world effect — are as efficient as random

networks in terms of information propagation while displaying a strong community

structure.

There is no exact measure for small worldliness. A network is considered to

meet the small world condition if when compared to a random network of the same

number of nodes and edges its average path length is similar to that of a random

network and its clustering coefficient is much larger [232, 228]. Formally, C >> Crand

and l ' lrand. Walsh [223] proposed a related measure that gives a discrete value:

(C/Crand)/(L/Lrand). According to Walsh, a network is small world if the ratio is

greater than 1.

Yet another striking property of complex networks is their robustness against

errors. It is advantageous for a system — networks are systems — to be fault-

tolerant in order to maintain its stability. It is undesirable that when a power line

fails a total black out follows. Nor is it desirable that the brain, or our body, stops

working with deadly consequences because some neurons, cells or proteins fail to

operate properly. Neither is it desirable for a village to disintegrate and fall apart

because some of its inhabitants pass away. Internet or peer-to-peer systems do not

crash because routers break or people sharing files shutdown their computers or

delete their files. It is evident that those systems are robust and can cope with

random failures and keep working. Many complex systems, and complex networks,

display a surprisingly high degree of tolerance to errors.

Redundancy has been often assumed as the cause of robustness [220, 49]. An

informal definition of redundancy is the existence of many alternative paths that can

preserve communication even if some nodes fail. However, recent studies on complex

network have shown that the degree distribution of the nodes has a strong effect on

the robustness of a network. Cohen et al. [53] and Albert et al. [13] showed how the

Internet is very robust against random errors, Jeong et al. [126, 125] showed that

simple organisms persist after a drastic intervention in their metabolic and genetic

network. Watts in [229], and Holme and Kim [117] studied the effect of power-law

networks but from a dynamic perspective, where failure of one node affects other



3.2. PATTERNS IN NETWORKS 39

nodes beyond the topological sense. For instance, if a router of the Internet fails, the

traffic will be redirected to other route, this might produce an overload of traffic on

some other routers, ending up in a cascade failure. Again scale-free networks were

more robust than random networks.

Complex networks that have a scale-free connectivity distribution are very ro-

bust against random errors. As we have seen in the previous section, many of the

real networks that grow without supervision are in fact scale-free networks. How-

ever, scale-free networks also have an Achilles heel [13], because even if they are

very robust against random errors, they are vulnerable against directed attacks.

The power-law distribution implies that there are very few highly connected nodes

(hubs), so when these are targeted, the whole system will collapse since the path

between most pairs of nodes in the network pass through these hubs. We must

remember, though, that attacks are artificial, they do not occur in nature. So, it is

understandable that the system does not adapt itself to cope with those attacks as

it does against random errors, which they do occur in nature.

Another interesting property of complex networks is that they display a charac-

teristic mixing pattern between nodes. In other words, the probability of nodes to

pair up depends on the type of these nodes. This is a phenomena well studied in

sociology under the name of assortative mixing, or homophyly. For instance, people

tend to interact with similar people, where similarity can be defined by many criteria

such as social status, expertise, race or education.

Complex networks also exhibit a mixing pattern between nodes. Pastor-Satorras

et al. [184] proposed a measure called degree correlation to capture the type of mixing

that occurs in complex networks. They showed that complex networks often display

a negative correlation by degree of connectivity, meaning that high-degree nodes

were often connected to low-degree nodes. Thus, nodes of different types, which

were defined by their degree, tended to pair up more frequently than nodes of the

same type. The correlation degree of most models prior Pastor-Satorras work was

zero, therefore, without a mixing pattern. Analysis of empirical complex networks

revealed a negative correlation, so nodes were arranged with dissortative mixing.

Unlike other complex networks, social networks have a completely different mix-

ing pattern. The nodes of a social network exhibit a positive degree correlation.

Therefore, the network displays assortative mixing. High-degree nodes tend to pair

up with high-degree nodes, and the same goes for the low-degree nodes. The first

benefit that was derived from studying a network’s mixing pattern — assortative

or disassortative — is that it establishes a clear boundary between social and non-

social complex networks [174]. This fact is very important since it implies that the

distributed process that leads to the formation of social networks differs from the

process underlying the growth of other non-social networks such as technological,

biological or information networks. As we show in the next section, most of the
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models that have been proposed to explain complex network formation cannot re-

produce assortative mixing. In some sense this should come as no surprise, since the

underlying assumptions were not plausible from the standpoint of social theory.

In spite of this, there are models that achieve assortative mixing and positive

degree correlations [180, 31]. For instance, Newman in [180] presented a growth

model that achieved a great part of the assortativeness [174] found in empirical social

networks, although not all. Newman himself suggested that the assortativeness that

was unaccounted for might well be caused by the underlying social processes of the

system. Arenas et al. [15] also suggested that formation of social networks could be

driven by some sort of optimization process.

Models

Research in complex networks have proposed dozens of models aiming to explain

the formation and evolution of this interesting class of networks. Most models can

be classified into groups depending on the rationale behind their connection scheme.

However, among models of the same group there are many differences. Most of the

differences are due to incremental improvements by reproducing empirical data more

accurately or by being more general or by capturing yet another characteristic of

complex networks that remained unnoticed until the date. Let us briefly summarize

the models that we consider more relevant. For a more comprehensive review of

complex networks models see [11, 175].

Watts and Strogatz in his pioneering article [232] presented a model that repro-

duced the small world property found in many empirical networks. Their model was

based on a stochastic rewiring process. It worked by starting from a regular graph,

a ring lattice network, which has a very high clustering coefficient but it also has a

high average path length and diameter. For regular graphs the average path length

does not grow logarithmically as it does for random graphs. Then, each edge of the

graph was randomly rewired with a probability p. Watts-Strogatz model was a one-

parameter model, so they tried the experiment for different values of p. When p = 0

the final graph was the same ring lattice, for p = 1 the final network was a random

network, therefore, it had short average path length but also low clustering. As it

can be seen in figure 3.2, as the rewiring probability p increases both the clustering

and the average path length decrease, however clustering decreases slowlier and for

p in the range [0.01..0.1] the average path length is so low that it is comparable with

the average path length of a random network. The clustering coefficient, however, is

still big enough, almost as the clustering of the original regular network. Hence, the

small world property can be obtained from a regular graph provided a little fraction

of the edges (between 1 and 10 percent) are randomly rewired.
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Figure 3.2: Average path length Lp and clustering coefficient Cp for the Watts-Strogatz

model [232]. The data is normalized for the values of a regular graph C0 and L0. The values

L1 and C1 correspond to those of a random network when p = 1. We can observe how in

the range [0.01..0.1] the average path length drops drastically, being similar to the average

path length of a random network. Clustering coefficient in that range is still comparable to

the clustering coefficient of a regular network.

Preferential Attachment

After the Watts and Strogatz [232] model, other models followed aiming not only

to reproduce other properties of complex networks, but to help understand how

networks came to have those properties. Perhaps the most well-know model is

the Barabási and Albert model of preferential attachment [22], which is able to

reproduce the power-law (scale-free) degree distribution. This model is based on

network growth, so it assumes that the network is continuously growing in size.

At every time step a new node is added, and it gets connected to a set of nodes

that already exist in the network. These nodes are chosen with a probability that

depends on its own degree, technically, Π(ki) = ki
P

j kj
. This model generates a

network where the degree distribution follows a power law with an exponent γ = 3,

P (k) ∼ k−3. The original model of Barabási and Albert attracted an exceptional

amount of attention in the literature. Albert and Barabási themselves proposed in

[10] an extension were edges could be rewired. By doing so, the model is able to

generate a power-law degree distributions with an exponent ranging in the [2..∞]

interval. The extended Albert-Barabási model is described as follows:

The algorithm starts with m0 isolated nodes, and perform at every step one of

these three actions:

1 With probability p add m (≤ m0) new links. We pick two nodes randomly.
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The starting point of the link is chosen uniformly and the end point of the

new link will be chosen according to the following probability distribution:

Πi =
ki + 1

∑

j(kj + 1)

where Πi is the probability of selecting the i-th node, and ki is the number of

edges of node i. This process is repeated m times.

2 With probability q, m edges are rewired. That is, we repeat m times: Choose

(uniformly) at random one node i and a link lij . Delete this link. Choose

another (different) node k with probability {Πl}l=1...N and add the new link

lik.

3 With probability 1− p− q add a new node with m links. These new links will

connect the new node to m other nodes chosen according to {Πl}l=1...N .

Once the desired number N of nodes is met the algorithm stops. The networks

generated with this algorithm are scale-free random networks, random is because

there is no correlations among edges [184].

It can be shown [10] that in the limit of large N , when p = q, this algorithm

ends up with a graph with connectivity distribution

P (k) ∝ (k + 1)
−

“

2m(1−p)+1−2p

m
+1

”

that can be approximated, when k >> 1, by P (k) ∝ k−γ where γ = 2m(1−p)+1−2p
m +1.

Other researchers achieved the same results using other analytical approaches

[73]. As a consequence they could fit the obtained distribution to the degree dis-

tribution found in the actor collaboration network. Dorogovtsev and Mendes [72]

proposed a model where new edges were added between old nodes and existing edges

can be removed. Amaral et al. [181] introduced constraints such as age, cost and

capacity into the preferential attachment. Bianconi and Barabási [28] introduced

competition among the nodes, thus a fitness value is assigned to each node. The

probability of receiving connections is, following Bianconi and Barabási, a function

of the degree (the preferential attachment) plus the fitness (attractiveness) of the

nodes(attractive). Another interesting model based on the preferential attachment

was proposed by Krapivsky et al. [143]. Most of the work on preferential attachment

considered the connection probability, Π, to be linear, Krapivsky et al. generalized

that to non-linear, covering the supra-linear, sub-linear as well as the original linear

preferential attachment. All those models based on the original idea of preferen-

tial attachment aimed to a better fit with the empirical networks, and henceforth,

explain the underlying process of network formation. However, these models, yet

elegant and beautiful, have some assumptions that are difficult to justify such as the
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assumption of global knowledge that is required to calculate the connection proba-

bility. The main criticisms to the preferential attachment models is with regard to

their unrealistic assumptions. For instance, they assume to have perfect and global

information about the system, which for sure does not hold in open systems such

as human societies. Thus, it is obvious that the motives that drive the autonomous

actors of a system are not a consequence of preferential attachment, although this

phenomenon appears as a by-product.

Edge Redirection

Another group of models for the understanding of complex networks formation are

those based on edge redirection, edge copying, or transitive closure. The different

names come from different authors who proposed the same underlying idea inde-

pendently [138, 142, 209, 76, 145]. This group of models do not rely on preferential

attachment to explain the process that generates complex networks. For instance

Krapivsky and Redner [142] proposed a model where nodes copy part of the connec-

tions of other nodes. When a node enters the network, it randomly chooses another

node to connect to, then with a given probability the node connects to the neigh-

bours of that node or it goes to the ancestor of the node and repeats the process.

To be precise, the authors do not use the term copy but edge redirection, but as

we said a similar idea was proposed by different authors, for instance, Kleinberg et

al. [138] and Kumar et al. [145]. Its rationale for their model was inspired on how

links are placed on the Web. They assumed that a page copied partially the links

from other existing pages of the same topic. Notice that this approach is much more

plausible since it only requires local information.

Furthermore, these models are able to reproduce the preferential attachment

phenomenon without relying on the global connection probability of the preferen-

tial attachment model. Nodes with high degree are more likely to be found than

nodes with low connectivity, since high degree nodes are more visible to those nodes

that enter into the system. Thus, the dynamics of the model itself reinforces the

phenomena of preferential attachment. The more connections a node has the more

connections is likely to have in the future. The saying “the rich gets richer”, which

is folk wisdom, entirely applies here as well as in the case of the preferential at-

tachment model. Nevertheless, edge redirection models do not require implausible

assumptions to operate.

Optimization

Yet another group of models to explain the emergence of complex network are those

based on optimization. These models are not as common in the literature as the

previous ones. Their rationale is that complex networks are the result of a opti-
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mization process. We find the idea very interesting since it is directly related to

the main properties of complex networks: robustness and efficiency in the diffusion

of information. Ferrer and Solé [83] show how a system built up from nodes and

edges that optimize both average path length and density (number of edges) ends up

having a complex network topology. This approach although interesting also suffers

from non-plausible assumptions since it requires global knowledge. The optimization

process is led by a fitness function that requires system level measurements which

in principle are unknown at the micro level. Ferrer and Solé run a hill-climbing

optimization process that minimizes the average path length as well as the den-

sity (edges are costly) and the result is a complex network with the small world

property. Another method based on optimization is the highly optimized tolerance

(HOT) proposed by Carslon in [47]. This model is related to self-organized criti-

cality. The optimization is based on finding the best topology to be fault-tolerant

by minimizing the redundancy. For instance, this model would find the optimal

distribution of food suppliers in a city so that not everybody depends on the same

food-supplies, since its lost would cause a famine, but the number of food suppliers

is kept to a minimum for the sake of market efficiency. We believe that this model’s

assumptions ignore the decision making process at the micro level (the individual

node) therefore is it difficult to explain the emergence of complex networks where

deploying and removing connections are the result of a decision process.

The model we present in chapter 8 falls into the group of models based on opti-

mization. Nevertheless, the nodes of our model -agents- perform a local optimization

process grounded in social exchange theory under local and imperfect information.

With the local optimization model we see that several kinds of complex networks

can be obtained by modifying an exogenous parameter of the system called harsh-

ness, which makes the optimization process easy or difficult depending on its value.

Thus, agents trying to optimize their partners can self-organize in different kinds of

complex networks depending on the harshness of the systems.
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Chapter 4

Extracting Reputation

This part of the thesis is devoted to methods for extracting knowledge embedded in

the relationships between the components of a system. To that end, two different

algorithms that resort to the analysis of the structure are presented. The first one,

in the current chapter, assesses the relevance of a node by its position within the

network. This ranking of relevance is indeed a good approximation to the agents’

reputation. The second one, presented in the following chapter, uses the topology

of the network to retrieve its underlying community structure.

Both algorithms are intended to extract knowledge — or information — about

the system by means of analyzing the structure of the interactions alone. This

information, which is inherently social, can be called upon for building efficient and

stable systems. We focus specifically on artificial societies populated by agents,

although the same algorithms can be applied to other domains. In particular, to

other systems composed of autonomous individuals living in an open environment

(see sections 1.1, 2.1 and 2.2 for a more developed argument about complex artificial

systems and their need of social measurements and mechanisms).

4.1 Description

The World Wide Web is beyond a doubt the biggest complex system subject to

study. This vast eco-system of information is composed of billions of pages and even

a greater number of links. The Web is a completely distributed and open system

where anybody can create pages and links according to their particular interests.

However, the spectacular growth of the Web in the last decade has ended in an over-

flow of information that cannot be managed without pre-processing and filtering.

In order to introduce some order in this awkward amount of information search

engines proposed to rank web pages by relevance. The first approach to rank pages

was focused in their content. However, this approach proved soon to be inadequate

47
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to find the relevant information on the Web. Therefore, an alternative approach

based on the analysis of the links rather than the analysis on the pages was rapidly

introduced.

This step was a paradigm shift; from using the information contained in web

pages to rely on relationships among web pages. If one takes a web page as an

individual, a link between web pages might be considered as some form of relation

between individuals, so that some kind of social awareness comes up. Hence, ranking

algorithms for the Web might also be applied to other systems represented as a

network, such as Social Networks. Those algorithms can provide information about

relevant individuals by identifying their position in the society.

Several algorithms are now in use that consider the World Wide Web as a graph.

We are interested in assigning a score to each node. A possible way to proceed is to

consider that a node i in this graph (i.e. a page or a document linked to it) is more

important (that is, gets a better position in the ranking) than a different node j if it

is linked to nodes that rank higher than the nodes connected to j. A node authority

results from the number and quality of the nodes that point to it. Essentially, the

main idea of this method lies in the transfer of confidence on the quality of a node

through a link. This intuitive and elegant idea underlies some well-known ranking

algorithms, such as HITS [137] and Pagerank [183].

Following Adamic and Adar [5] the Web is also a web of people, therefore the

relationships of trust that evolve among people might be subjected to the same

analysis of the relationships between web pages. Social Network analysis [226] (see

section 3.1 for further discussion) suggests that relationships between individuals can

be regarded as a measure of trust. The location of a given member of a community

within a social network may be used to infer some properties on his/her degree

of reputation in the community. For instance, experts who are well-known and

highly regarded by most of the members in a community are easily identified as

highly connected nodes in the social network. This relational information could

be used as the basis of a ranking mechanism instead of using ratings created on

isolated information about an individual. Consequently, the very same methods

that have proven successful for the Web could be applied to social networks to

retrieve reputation of individuals.

To that end, we devised a ranking algorithm called NodeRanking. This algorithm

was designed to meet the requirements of multi-agent systems. First, it operates us-

ing only local information. The process is distributed through all agents — or other

computation entities — of the system so that global knowledge, such as the adjacency

matrix of the network, is not required. Second, the algorithm adapts dynamically to

different network structures. The characteristics of social networks differ to those of

the Web as discussed in section 3.2.1. Those differences are manifested in differences

on the rankings issued by different ranking algorithms, as we will show in the ex-



4.2. RANKING ALGORITHMS 49

periments section. Our algorithm unlike other ranking algorithms such as Pagerank

and HITS take some particularities of the structure into account.

4.2 Ranking Algorithms

Before presenting our algorithm we review two of the most well-know representatives

of ranking algorithms in graphs: Pagerank [183] and HITS [137]. These algorithms

will be used in the experiments to test the performance of our NodeRanking algo-

rithm.

4.2.1 Overview of Pagerank

The main idea behind Pagerank [183] is that good nodes point to or are pointed by

good nodes and its strategy is that of a modified random walker. Let L the adjacency

matrix of the graph and P such that:

Pij =
lij

∑

k lik
(4.2.1)

that is, P is a stochastic matrix (
∑

k Pik = 1) derived from L. Now, to avoid the

rank sink problem [183], some probability of jumping to other nodes in the graph is

introduced, in such a way that cycles on the graph (that would generate an erroneous

increment of authority) may be broken. Thus, the full stochastic matrix is:

M = e

(

1

N
~1~1T

)

+ (1 − e)P (4.2.2)

where ~1 = (1 . . . 1)T , N is the number of nodes and e is the jumping probability

(0 ≤ e ≤ 1). Pagerank depends on e and its value must be fixed a priori (e = 0.15 is

the recommended value [183]). The equilibrium distribution, that is, the stationary

state of the Markov chain defined by the transition matrix M , can be obtained by

calculating the principal eigenvector of the matrix M T .

4.2.2 Overview of HITS

In HITS algorithm [137], each page has both a hub score yi and an authority score

xi. The rationale for HITS is that a node with high authority is pointed to by many

nodes with a high hub score and a node with high hub points to many nodes with

high authorities. The final scores of every node can be obtained through an iterative

process:

~x(t+1) = LT L~x(t)~y(t+1) = LLT~y(t) (4.2.3)

from a given x(0) and y(0). Finally, the solution for authority, that is, the stationary

state of the equation 4.2.3, is the principal eigenvector of the LT L matrix. Also, the

principal eigenvector of LLT matrix contains the hub scores.
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Figure 4.1: Flow of authority in NodeRanking.

do

n = getNode(g)

do

passAuthority(n)

nnew = getNextNode(n,g)

n = nnew

while (nnew!=null)

while (!converge())

Figure 4.2: NodeRanking algorithm

4.2.3 NodeRanking algorithm

The underlying idea of NodeRanking is the same one used by Pagerank and HITS.

Roughly speaking, each node of a graph has an associated degree of authority (which

is always positive), which depends on the degree of authority of its neighbours.

Initially, all nodes are set to have the same authority, as the algorithm proceeds, the

authority of a node is recalculated as a function of the authority of the nodes that

point to it (in-nodes). The underlying idea is that authority of a node is propagated

through its out-nodes. The outcome of the algorithm is that the authority of a

node, depends on the authority of those nodes who point to it. This idea, sketched

in figure 4.1, is the very same idea used by the previously reviewed algorithms.

This approach, however, is sensitive to cycles in the graph, which can result in a

deadlock in the authority propagation. To solve this problem, known as rank-sink,

we followed a similar solution to that proposed by Page et al. in [183] (i.e. with a

very small probability it is possible to go from a given node to any other node of the

network). This effect is achieved by introducing the jumping probability that avoids
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the stochastic processes to get trapped in a cycle of the graph.

NodeRanking follows a random walker strategy to explore the graph. It starts

from a randomly selected node, and proceeds by selecting one of the nodes that can

be reached through out-edges. The algorithm proceeds as described in figure 4.2.

Some functions of the algorithm require further explanation:

• getNode (Graph g): returns a randomly (according to a uniform distribu-

tion) chosen node.

• getNextNode(Node n, Graph g): returns one of the out-neighbors nodes

of node n. Each node has a set (can be empty) of out-edges that point to other

nodes. Thus, getNextNode(n,g) returns the next node m to be visited from n.

This node is selected with a probability that is calculated as a function of the

weight of the edge between n and m:

Prchoose(n → m) =
wn→m

∑

∀l∈outNodes(n) wn→l
(4.2.4)

where wn→m is the weight of the link connecting n and m. This probability

would be Pnm following the notation introduced when Pagerank was described.

When getNextNode() returns a node set to null the path is broken. There are

two cases where the path may break: the first one is when the algorithm arrives

at a node that has been visited in the previous k steps (for an a priori fixed

value of the parameter k); the second case depends on the jumping probability.

The path is broken with a probability Prjump(n):

Prjump(n) =
1

#outEdges(n) + 1
(4.2.5)

Nodes with fewer out-edges have a greater probability of breaking the path.

This could be seen as a walker that gets bored because of the reduced range

of choices. By doing this, the deadlock problem previously mentioned due to

cycles in the graph is solved.

• passAuthority(Node x): this function assigns part of the authority of node

x to all these nodes that x points to. That is,

∆auth(y) =

(

Prchoose(x → y) × auth(y)

F y
rw

)

(4.2.6)

where auth(y) is the authority of the node y and F y
rw is a normalization factor

to maintain the authority within a limited range of values. Without this factor,

values calculated with equation 4.2.6 would tend to infinity since the authority

of a node gets higher and higher as the algorithm proceeds. It is associated
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to the particular walk of the random walker (hence the rw subscript). The

factors of more frequently visited nodes grow faster than the values of the less

visited ones. The growth of these factors is monotonously increasing. Thus,

we can insure convergence towards a finite value. Factor F y
rw is initialized for

every node as the sum of the authority of all nodes in the graph. The initial

authority of a node has to be positive, and factor F y
rw must be ≥ 1.

• converge(): this function is a stationarity test on all the nodes in the graph.

Each node n stores its last increment of authority ∆auth(n). The increment

of authority tends to 0 since F n
rw factor grows monotonously with time. The

function converge() tests the state of each node and, if ∆auth(n) < ε the node

will be considered as stationary. When all the nodes of the graph are stationary

the algorithm stops. Actually, the convergence function does not test all the

nodes because it would not be very efficient. The event of becoming stationary

is notified by the nodes themselves. The parameters of the algorithm that have

been used along all the experiments are: k = 4 and ε = 10−6.

4.2.4 Comparisons

Most ranking algorithms based on the analysis of the links share the same underlying

idea of a random walker process. The algorithm presented in this chapter is not

different, although its implementation and behaviour differ from those of Pagerank

and HITS algorithms. Let us then, overview the differences between our algorithm

and other ranking algorithms, in particular Pagerank and HITS.

Distribution Using Only Local Information

HITS and Pagerank are based on finding out the stationary state of a linear dynam-

ical system characterized by the variance-covariance matrix in the case of HITS,

and the transition probability matrix in the case of Pagerank. The adjacency ma-

trix must be available for these algorithms to operate. Moreover, the principal

eigenvector, which is calculated iteratively, need to be frequently normalized. Con-

sequently, these algorithms are also dependent on synchronization. Even though

these algorithms can be easily parallelized to reduce both computational and spa-

tial cost, access to the adjacency matrix is still required. For systems composed by

autonomous entities, such as multi-agent systems, the assumption of global infor-

mation is highly inadvisable, since it goes against the limitations of the individual

agents of the system (see section 2.1).

Unlike Pagerank and HITS our algorithm NodeRanking uses only local informa-

tion. Each node i only needs to know the nodes that it points to, and these ones

have to be aware of i’s convergence towards the stationary state. In order to re-



4.3. EXPERIMENTS ABOUT RANKING, REPUTATION AND RELEVANCE53

trieve the results of the ranking process, a centralization point is required, but even

in this process the communication proceeds unidirectionally (from the nodes to the

controller) so it is not necessary at all to have information about the whole graph.

Pagerank and NodeRanking are almost identical in the underlying idea. Both of

them follow the same random walker strategy. Actually, the transition probability

matrix of NodeRanking can be defined as follows:

M = J
1

N
~1~1T +

(

~1~1T − J
)

P (4.2.7)

where ~(1) is a vector of 1, N is the number of nodes, P is the adjacency matrix

normalized by rows and J is the jumping probability matrix defined as a 0 matrix

where the diagonal contains the jumping probability of a node, i.e. Jii contains node

i jumping probability (this was defined in equation 4.2.5). The results obtained by

Pagerank when finding out the stationary state of the Markov chain defined by

the transition probability matrix M, i.e finding out the principal eigenvector of the

matrix MT , are equivalent to the results obtained by NodeRanking algorithm. The

advantage of NodeRanking is that it is not necessary to know the adjacency matrix

of the graph to run the algorithm.

Dynamic Jumping Probability

Unlike Pagerank the jumping probability of NodeRanking is dynamic and only de-

pends on the connectivity of nodes (see equation 4.2.5). This is not the case of

Pagerank where the jumping probability is fixed regardless of the connectivity of

the node or the network topology. The jumping probability of Pagerank is set to

0.15 (values in the [0.1 . . . 0.2] range) , those values were found experimentally by

testing the algorithm on the Web. However, as we will discuss in the following sec-

tion, the performance of Pagerank is affected when applied to other networks rather

than the Web due to their different topologies.

4.3 Experiments about ranking, reputation and rele-

vance

We performed two series of experiments with the NodeRanking algorithm. The first

series aimed towards testing how the reputation of community members might be

derived from the topology of the social network. The second series of experiments

was carried out to test the quality of the ranking yielded by NodeRanking in a

Web-like network.
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Figure 4.3: Social network of the Software Department at UPC

4.3.1 Extracting Reputation from Social Networks

NodeRanking was applied to the social network of an experimental community

formed by the members of the Software Department at the Universitat Politécnica

de Catalunya, herein UPC. Figure 4.3 is a snapshoot of the social network used in

our set of experiments.

Social Network of the Software Department at UPC

This social network was generated automatically by our NetExpert system [198].

This system was part of the Collaboratory [217], which was a multi-agent recom-

mender system aimed to facilitate the knowledge sharing and diffusion in a com-

munity of researchers. Basically, when new content was available in the system it

was distributed to those people susceptible to be interested in it. This classical col-

laborative filtering was extended with the addition of social networks provided by

NetExpert. The social networks were built by analyzing the personal web pages and

deploying links between researchers that either were co-authors of a paper or whose

names appeared in other researchers’ personal web pages.

According to the measure of small worldliness proposed by Walsh [223] the social

network of UPC is a small world, the Walsh’s ratio is (C/Crand)/(L/Lrand) = 10.4.

Furthermore, the connectivity distrution found in the UPC’s social network decays

exponentially, as it can be observed in figure 4.4 (because of the low number of nodes

in the graph, we used the accumulated frequency instead of the simple frequency in

order to reduce fluctuations). These measurements clearly point to the fact that the

UPC Social Network is indeed a small world network.
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Figure 4.4: This figure shows the node degree histogram in a logarithmic scale on

the frequency. Because of the low number of nodes in the UPC Social Network, the

accumulated frequency has been used instead of the simple frequency.

As we reviewed in section 3.2.1 some of the characteristics of social networks, such

as the small world property, can be used to improve graph algorithms that did not

take into account the special properties of the complex networks. In particular, one

must take into account the special characteristics and properties of these networks

when designing algorithms of search and propagation, some examples are [223, 5, 6,

231, 7, 237].

Inferring Reputation from the Social Network

For the experiments on social networks a fragment of the community (34 members)

was selected randomly to become the test set. The ranking obtained by means of

NodeRanking was called RankNodeRanking. It was compared with the results obtained

by applying Pagerank with e = 0.15 and also with the results of the HITS algorithm.

Pagerank and HITS work with unweighted graphs since they were devised to

work on the Web (a generalization to weighted graphs of these algorithms would be

trivial). Weighted edges may be useful, if available, because the normalized weight

of an edge gives more information than the fact that the edge exists or not. The

UPC Social Network has weighted edges, so two rankings instead of one were built

for each algorithm: RankPageRank and RankHitsAuth if weights are not taken into

account, or RankPageRank(w) and RankHitsAuth(w) otherwise.

In order to validate the resulting rankings they had to be compared against a

real and accepted measure of importance for this type of network. The community

behind the social network is a group of researchers. It is important to test both

algorithms on a social network because the alternative (to test them on the web)
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Correlation coefficient Rankcite Rankcite−self

Rankcite 1.0 0.983

Rankcite−self 0.983 1.0

RankNodeRanking 0.687, s = 8.6 × 10−4 0.621, s = 0.011

RankPageRank(w) 0.535 0.486

RankPageRank 0.521 0.495

RankHitsAuth(w) 0.412 0.383

RankHitsAuth 0.342 0.323

Table 4.1: Correlation between rankings

poses several problems. On the one hand, it is difficult to get a representative

sample of resources from the web. On the other hand, it is difficult to analyze the

quality of a resource on the net. Finally, the underlying idea of authority flux that

is common to both algorithms is better represented in the links of a social network

(in the sense of being a more significative measure) than in the links existing on the

Web. A simple and recognized measure of authority in scientific communities is the

one obtained through the rankings of an independent scientific publication ranking

agency.

Therefore, the citation indexes for each of the 34 randomly selected members

of the Software Department were compared against the ratings that NodeRaking

yielded (RankNodeRanking), against the ratings that Pagerank yielded (RankPageRank,

and RankPageRank(w)) and also against the ratings that HITS yielded (RankHitsAuth

and RankHitsAuth(w)).

CiteSeer1 was used as a source for citation index values. The research papers of

each member of the community were retrieved from CiteSeer with the corresponding

number of citations and self-citations for each of them. Two rankings for the mem-

bers of our test community were calculated. Rankcite sorted researchers by number

of citations and Rankcite−self sorted researchers by number of citations without

counting self-citations. These rankings can be considered as reference rankings, the

closest ones to real reputation measures in the scientific community. To compare the

quality of the ratings obtained by NodeRanking, Pagerank, HITS and the reference

rankings built using Citeseer, the correlation coefficient between rankings was used

as a similarity measure.

Table 4.1 and figure 4.5 summarize the correlation values between reference, the

desired, rankings: Rankcite and Rankcite−self and the rest. The ranking RankNodeRanking

is the average of twenty executions of the algorithm. Means and standard devia-

tions are also given. Variability is due to the asynchronicity of the authority transfer

1Citeseer, available at http://citeseer.ist.psu.edu/
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Figure 4.5: Correlation between ranking. Left sub-figure shows correlations with

Rankcite, right sub-figure shows correlations with Rankcite−self

process within NodeRanking:

Regardless the reference ranking there is always the same order among the gener-

ated rankings results. RankNodeRanking values are always better than RankPageRank

and RankPageRank(w) values, and these ones are better than the RankHitsAuth(w) and

RankHitsAuth. Notice that the rankings obtained by the HITS algorithm are better

if weights of the edges are taken into account. However, in any case the correlation

is high, the correlation between two random ranking is close to 0. Therefore, corre-

lations of 0.621 or 0.687, yet not perfect, are indeed interesting. One must take into

account very different nature of the ranking yield by the ranking algorithm and the

ranking build from the number of citations.

The rankings obtained by NodeRanking are better than the ones obtained by

Pagerank. Both algorithms follow the same random walker strategy with the excep-

tion of the authority updating mechanism (it is asynchronous in NodeRanking and

synchronous in Pagerank). One might expect the results to be more similar. The

reason for a better performance of NodeRanking may be in its ability to adapt itself

to the graph topology.

In figures 4.6 and 4.4 the distribution of (out-edges) degrees can be observed.

It follows an exponential distribution which may be used to compute the average

jumping probability. Let us call this degree distribution dout−connectivity :

Prjump =
∑

i

dout−connectivity(i)Prjump(i) (4.3.8)

The average jumping probability of our social network is 0.5314. So NodeRank-

ing, with its dynamical adjustment of the jumping probability, is able to adapt to

different graph topologies. Pagerank is not able to calculate such good rankings for



58 CHAPTER 4. EXTRACTING REPUTATION

Figure 4.6: Social Network out-edges degree distribution

social networks. One must take into account the differences between the Web and

social networks. For instance, the clustering coefficient is typically higher in social

networks, which display a stronger community structure. The effect of close-knit

communities was described by Lempel and Moran [148] as a factor that worsens

the calculation carried out by Pagerank. Moreover, the connectivity distribution of

the social network used in the experiments is different from that found in the Web.

The exponential distribution of the connectivity implies having a higher number of

nodes with lower connectivity. We modified Pagerank to work with a with a jump-

ing probability of e = 0.5414 and results obtained by Pagerank were very similar to

those obtained by NodeRanking. Thus, our algorithm is better suited to work with

other networks besides Web-like networks. Furthermore, the fact that NodeRanking

only uses local information is another advantage over Pagerank.

4.3.2 Extracting Relevance from the Web

As it was mentioned before, NodeRanking is able to adapt itself to the graph topol-

ogy. In order to check this ability, another experiment was performed to compare

NodeRanking against Pagerank. Now the graph used for testing purposes is a graph

with some of the topological properties of the World Wide Web.

Many efforts have been devoted to generating graphs that reproduce the topolog-

ical properties of the Web as we saw in section 3.2.1. For this experiment we chose

the model proposed by Klemm and Egúıluz [139]. This model generates graphs with

power-law connectivity distributions with exponent around γ = 2.25, which is the

exponent observed experimentally in the World Wide Web [185]. The parameters

of the graph are m = 8, a = 2 and N = 25000 (see [139] for details).

The correlation between rankings obtained by Pagerank and NodeRanking in a
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Figure 4.7: This figure shows the correlation between the ranking obtained by

PageRank and the ranking obtained by NodeRanking in Klemm and Egúıluz’s model

of scale-free graphs.

web-based graph is very high as can be observed in figure 4.7. In the x axis there is

the size of the compared ranking. The correlation of the first ten nodes is 0.9964.

The correlation of the first one hundred is 0.9564. Finally, the correlation of the

first nine thousand nodes is 0.8892. It can be concluded that the rankings obtained

in huge graphs that have a scale-free connectivity distribution are almost identical

for both algorithms.

4.4 Discussion

In this chapter we presented an algorithm that finds the relevance of nodes by means

of the network structure. The rankings by relevance provided by our algorithm were

compared to other rankings yielded by Pagerank and HITS in two networks with

different structural properties; the first one was a social network from a real com-

munity, and the other was a Web-like network generated with the Klemm-Egúıluz

model of scale-free networks.

The results of the experiment performed on a real community — an academic

community — were compared to an established measure of reputation in Academia,

i.e the publication impact by the number of citations. The results seem to indicate

that the ranking by relevance yielded by NodeRanking is a good approximation to

the reputation of a researcher within its community. Other ranking algorithms, such

as Pagerank or HITS, do not obtain such an acceptable approximation. A second

experiment has been performed in a graph that follows the Web connectivity distri-

bution. The results are highly correlated with the ranking obtained by Pagerank.
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NodeRanking is able to rank the nodes of a graph regardless its topology and by

only using local information. The algorithm does not require to have the adjacency

matrix to operate. Furthermore, the algorithm is not biased to a particular topology

since it is able to adapt itself to different network structure by dynamically changing

its jumping probability.

Besides the algorithm, an important contribution of this chapter is to show that

analysis of the structure can reveal social information such as reputation, as we have

seen in this chapter, or community structure, that will be addressed in the following

chapter.

Reputation is an important topic in Artificial Societies, and in particular in

multi-agent systems and electronic communities (see section 2.2 for a discussion

about trust and reputation). The presented algorithm illustrates that structure can

be used to infer knowledge about individuals without resorting to analysis of their

internal behaviour. Thus, by analyzing the social position of an agent within the

system a good approximation to its reputation can be drawn using our algorithm.

This method, yet not perfect, has an important advantage with respect to other

ways of measuring reputation. Namely, it does not require users to be continuously

and explicitly issuing ratings [245]; a method that is seen as a burden on users and

eventually a reason for poor performance of collaborative systems.

Other multi agent systems that use social networks either do not use them for

reputation measurement, as is the case of ReferralWeb [133] or still rely exclusively

on rating feedback from users as [243] does. This one has only been tested on a

simulated community as opposed to the test we carried out on a real one (another

example of these tests on simulated communities is [245]). Work is under way to

state under which patterns of interactions among agents a social network graph

structure arises [67], and to use structure to improve agent design and operation.



Chapter 5

Finding Community Structure

In the previous chapter we presented an algorithm to find out the relevant vertices

of a network by analyzing its structure, as a consequence a measure of agents’

reputation could be drawn depending on their position in the social network.

To delve further into the knowledge embedded in the structure of networks we

devised a clustering algorithm to extract the community structure within a network.

Community structure refers both to the cohesive groups within a network and to

the relationships between those groups. Finding the underlying communities in a

network allow us to identify those groups of nodes — or agents — whose interactions

occur mostly with members of the same group, thus, forming a close-knit community.

The relationships between these communities provide further understanding of the

structure of the network, and by extension, of the systems that the network models.

5.1 Description

Clustering plays a key role in the analysis and exploration of data. In short, clus-

tering is the method by which meaningful groups within collections of data are

revealed. These clusters are intended to group individuals — or samples — who are

similar to each other so that the hidden structure within the collection of data is

extracted, resulting in a valuable acquisition of knowledge about the original data.

Data-mining and machine learning are disciplines that extensively work with clus-

tering, specially, with datasets composed by individuals and attributes. Their goal

is to identify groups of individuals which are similar according to their attributes.

Thanks to the recent collective effort on analyzing and compiling very large net-

works, there is a growing interest in methods based on the structure — topology —

of the networks rather than on the individuals’ attributes.

This turn toward structure has been possible because of the characterization

of many systems as networks (see section 3.2). One of the regularities found in

61
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complex networks [11, 175] is the high cliquishness of the network [232], which leads

to the fact that there are groups of vertices that are very interconnected among them

with few interactions outside each group. Therefore, there is an implicit community

structure within complex networks.

Girvan and Newman [101] proposed an algorithm to extract the community

structure from complex networks that has become one of the most used among the

researchers in this area. From that important work a branch of research on complex

networks has turned into clustering algorithms to retrieve the community structure

in those networks. To evaluate the accuracy — or quality — of a community struc-

ture yielded by a clustering algorithm, Newman and Girvan devised a quantitative

measure called modularity Q. Although there are other quantitative measures [129],

modularity is widely accepted in the physics community. Q is defined in [179] as

Q =
∑

i

(

eii − a2
i

)

(5.1.1)

Modularity is the addition of the modularity of all the groups, Q =
∑

i qi. Thus,

for each group i that contains k vertices the modularity is calculated as the fraction

of edges that have both ends pointing at vertices in group i, eii. The fraction of

intra-group edges is confronted with the fraction of edges of that group, ai, which

are edges whose end points belong to at least one of vertices in i. This successful

measure has been adopted not only to benchmark the accuracy of the clustering

but also as the fitness value for clustering algorithms based on optimization. Find-

ing the partition of groups that maximizes Q is believed to be a NP-hard problem,

which makes a brute force exploration impossible for networks bigger than dozens

of vertices. However, several search heuristics can be applied to explore the huge

space of states in order to find a good partition. Following this approach, many

algorithms have investigated different exploration heuristics to find the community

structure while maximizing Q. Newman proposed in [176] a hill-climbing heuristic

to create the hierarchy following an agglomerative strategy. The baseline is that

every single node is a cluster, then the pair of clusters whose union produces the

biggest increment in Q are merged into a single one. The process is repeated until

only one cluster remains. By following the merging operations, the hierarchy that

reveals the community structure is built. However, a hill-climbing heuristic cannot

escape a sub-optimal maximum. Therefore, other search heuristics were devised.

For instance, Guimerà and Amaral [108] proposed a simulated annealing approach.

Duch and Arenas [74] proposed an algorithm based on Extremal Optimization. Both

algorithms were able to extract the community structure more accurately in terms

of modularity, although they were not as efficient as Newman’s Fast algorithm [176].

Newman has very recently proposed another clustering algorithm [177] which out-

performs the previous algorithms in both modularity and efficiency, although it is
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not as efficient as his previous fast algorithm [176]. Danon et al. [61] have also very

recently presented a modification of Newman’s Fast algorithm that while maitaining

its computation efficiency yields more accurate partitions in terms of modularity.

Modularity optimization methods are neither the first nor the only ones to work

on clustering in complex networks. In [101] Girvan and Newman reviewed classical

hierarchical clustering algorithms on networks, showing that some classical distance

measures were not well suited to work with complex networks. While the review

done by Girvan and Newman in [101] was essentially correct, it overlooked two rel-

evant areas that were already working in clustering of complex networks. Sociology

was addressing clustering in Social Network Analysis [225]. On the other hand,

Computer Science was also working in clustering of a particular instance of complex

networks: the Web. Gibson et al. [96] and Kumar et al. [146] addressed clustering

based on the analysis of the links between Web pages. A common tool used to

address clustering on the Web is spectral analysis. However, this technique is appli-

cable to any kinds of network, for instance, newsgroups [34] and protein networks

[39]. Spectral analysis has also been used in many other areas besides clustering.

For instance, in work-load distribution between processors [204] and to find the rel-

evant vertices of a network [183, 137]. Obviously, not all clustering is limited to

spectral analysis. Flake [88] proposed an alternative approach based on minimum

cut-trees over expanding networks that worked over the Web and could be applied to

other kind of networks. However, we find particularly interesting clustering methods

based on random walks [112, 37], which can be seen as a particular case of spectral

analysis. The underlying idea behind clustering using random walks is very intu-

itive: if a random walker starts from a given node, it will tend to visit more often

vertices that belong to the same community of this initial node. So, provided that

a community structure exists, a random walker will spend most of the time stuck

within the community it started from.

Our algorithm is a combination of spectral analysis and modularity optimiza-

tion. We adopted this combination in order to achieve a good compromise between

efficiency and accuracy of the clustering. Spectral analysis is used to reduce the

number of initial vertices of the network: by means of a set of random walkers we

create an initial partition of the network formed by a number of groups much smaller

than the initial number of vertices. Consequently, the number of merge operations

required to build up the hierarchy is reduced. Asymptotically our algorithm has a

complexity O(n2), which is the same complexity of Newman’s fast algorithm [176].

However, in terms of computational cost it is more efficient since the complexity can

be decomposed as O(ns) + O(s2), where n is the number of vertices and s is the

number of groups in the initial partition produced by the random walkers. Despite

s being smaller than n it is not upper-bounded by a sub-linear function of n, so

that the complexity remains O(n2). Yet, it is clearly more efficient and allow us
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to analyze very large networks in reasonable time while maintaining high quality

clustering.

5.2 Algorithm

The proposed algorithm, henceforth PBD (after the initials of the authors), consists

in an agglomerative hierarchical clustering where the initial groups are those pro-

duced by an initial partition of the network. The first step of the algorithm consists

of a process of s random walkers traversing the network. The transition probability

matrix M is defined as

M = (A + I)D−1 (5.2.2)

Where I is the identity matrix and D is a diagonal matrix of the form Dii =

1 +
∑

jAij. Thus, Mij is the probability to go to node j from node i. The process

carried out by the random walkers is defined by

Gt+1 = M ′Gt, (5.2.3)

Gt is the matrix that contains the probability distribution of each random walker,

Gt
ij is the probability that the random walker j is at node i at time t. Usually, the

process is repeated iteratively until the stationary state is reached. However, we are

interested in the transient state for all random walkers, consequently the process is

repeated until we obtain GT , where T is set to 3. Therefore, each random walker has

done three jumps, which is the minimum number of hops to complete the shortest

path to the origin point. Once the stochastic process is finished, each node i is

classified into the group j which corresponds to the largest column at row i in G.

Through this process, the initial n vertices are classified in approximately s groups

and all the vertices of the same groups share that they were visited the most by

the same random walker. Consequently, this means that they have a high degree of

neighbours in common which implies a community. While this method is far from

perfect, it allows us to drastically reduce the initial number of groups. The final

number of groups might not correspond exactly to s since random walkers could

preclude others. A random walker i is precluded when all vertices by a random

walker i are also visited more often by other random walkers, consequently the

visited nodes are classified into others groups rather than the group started by i.

Further, since the markov process is only iterated T times there is no guarantee that

all vertices will be visited at least once, in this case an extra group with a single

node is created.

The partition of the network heavily depends on which vertices are seeds —

origins — of the random walkers. This problem is very related to classical clustering
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algorithms [121, 122] such as k-means [90]. How many seeds are required and where

to place them is an open question [36]. We propose a straight forward heuristic that

selects which vertices will be the seeds for the random walkers, i.e. to define G0.

Let R be the fraction of the most connected vertices chosen as seeds. If ki ≥ z a

random walker will start at node i, where the connectivity threshold z is defined as

the maximum connectivity that makes the partition composed of the most connected

nodes larger or equal than R,
∑j≤max(k)

j=z p(kj) ≤ R, where p(kj) is the fraction of

vertices with connectivity kj . The parameter R allows us to decide approximately

the number of seeds, although the initial number depends on the structure of the

network. For R = 1 there would be too many seeds for the algorithm to be efficient.

On the contrary, R ∼ 0 would be very efficient but the partition would be ill-

constructed. In our experiment we set R to 1
5 obtain good results for a wide variety

of networks, as shown in Table 5.1 and 5.2. Future work will look into different

heuristics to choose the seeds, the quality-efficiency tradeoff of our algorithm is

really dependant in this process, and other heuristics more elaborate might provide

better results than our current straight-forward selection rule.

The complexity of finding the seeds for the random walkers is O(n). The connec-

tivity distribution and the connectivy threshold z can be computed in linear time

respect to the number of vertices. In fact, the first approach we tried was to get the

n ·R most connected nodes, which would entail a sort operation with cost O(nlogn).

This option was discarded in favor of the connectivity threshold due to the extra

cost which our algorithm intends to minimize.

The stochastic process defined in equation 5.2.3 has the iterative multiplication

of two matrices, M and G, of dimension n × n and n × s respectively. However,

thanks to the sparseness of both networks the cost can be reduced from O(n2s) to

O(ms), where m is the number of edges. For each random walker j its probability

distribution can be calculated in the worst case scenario with cost O(m). Thus, the

final cost can be considered O(ns) because the number of edges scales with n in the

limit of large n.

Once the initial partition is created, the algorithm builds an agglomerative hi-

erarchical clustering. This method consists in creating a series of partitions of the

data: Cs, Cs−1, ..., C1, where first Cs consist of s single clusters (groups), and the

last C1, consists of a single group containing all the individuals. The method iter-

atively joins the two individuals or clusters (groups of individuals) which are most

similar. Thus, after s − 1 join operations the clustering is complete, and the result

is a binary tree known as dendrogram that reveals the underlying structure of the

data.

Let us say that the initial partition yielded s groups, despite the fact that it is a

upper bound since some groups might be empty because their random walkers were

precluded by others. For each group j, the contribution to the total modularity, that
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is qj = ejj − aj2, can be calculated in linear time O(s). The group that contributes

the least to the total modularity Q — let us say j such that j = argmink(qk) — is

selected to be joined to the group that maximizes the increment of modularity as

defined in the following equation,

4Q = (2eij + eii + ejj) − (ai + aj)
2 − (eii − a2

i ) − (ejj − a2
j ) (5.2.4)

The increment in total modularity is the modularity of the merged group (2eij +

eii +ejj)−(ai+aj)
2 minus the contribution to the modularity of both groups; qi and

qj. Equation 5.2.4 can be reduced trivially to Eq. 2 of Newman’s Fast Algorithm

[176],

4Q = 2eij − 2aiaj = 2(eij − aiaj) (5.2.5)

In the event that two candidates, i1 and i2, have the same effect over the total

modularity, the candidate group chosen will be the one that has the least modularity,

min(qi1 , qi2). Thus, groups with low modularity are preferred in the merge operation.

The merge operation can be performed in the worst case scenario in linear time

with respect to the current number of groups, thus O(s). Furthermore, the operation

needs to be done s−1 times. Therefore, the complexity of building up the hierarchy

is O(s2). The search heuristic proposed is extremely greedy since it only takes

into consideration pairs of groups, provided that one groups is fixed. Conversely,

Newman’s fast algorithm calculates the gain of modularity for each possible pair of

groups. Besides that, other algorithms based on modularity optimization usually

have even more expensive search heuristics that allow a better exploration at the

expense of efficiency. Our proposal was designed to focus on efficiency, as it can be

seen in the heuristic decisions made by the algorithm. However, as we will show in

the experiments section, this focus on efficiency does not necessarily imply a loss of

quality of the clustering.

5.2.1 Parallelization

To reduce even further the execution time of the algorithm its parallelization could

be easily implemented. The stochastic process as defined in equation 5.2.3 can be

carried out in parallel by different computers or processors. To calculate the prob-

ability distribution of a given set of random walkers, only the transition probability

matrix is required. Thus, the matrix G of dimension n× s could be split column by

column into a set of smaller matrices of dimension n × ς, where ς � s. This would

drastically reduce the cost of the stochastic process. Unfortunately, the modular-

ity optimization step cannot be parallelized so easily. Thus, trivial parallelization

would only affect the spectral analysis part of the algorithm. Although this part is
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the most expensive part in the algorithm O(ns), the modularity optimization O(s2)

would still be executed sequentially. Therefore, the asymptotic cost of the PBD

algorithm would still be O(n2).

5.2.2 A Working Example with Zachary’s Network

To illustrate our algorithm we include an execution on the Zachary network [246],

which is a well-known dataset in the literature of community extraction. In figure

5.1 we can find the network at the different stages of the execution of the algorithm.

Figure 5.1.a shows which vertices, labelled 2, are seeds of the random walkers, 16 in

total. Thus, s is 16 compared to the original 34 vertices. In table 5.2 the relation

between network size n and the number of random walkers s for a wide range of

networks is shown. Figure 5.1.b shows the initial partition of the networks produced

by the random walker process, described in equation 5.2.3. The initial 34 vertices

are grouped into 13 groups. This partition has a modularity Q of 0.1547. From

that point on the algorithm starts the modularity optimization stage governed by

equation 5.2.4. At each step, two of the remaining groups are joined according to

equation 5.2.4. Figures 5.1.c and 5.1.d show the network divided into 4 and 2 groups

respectively.

The community structure of Zachary’s is better seen in figure 5.2. The maxi-

mum modularity is obtained by the partition in 4 communities, achieving Q=0.3937.

However, the original empirical work on the Zachary Karate Club [246] found two

communities: those aligned with the instructor and those aligned with the admin-

istrator. The division into two groups produced by PBD algorithm produces a high

modularity Q=0.3718. Also, the two original communities found empirically corre-

spond to the communities found by the algorithm with the exception of node 10,

which is misclassified.

It is evident that figure 5.2 is not a dendrogram over all the vertices of the

network, but a dendrogram over the initial communities. As a consequence of the

random walker process, the structure between vertices belonging to the same initial

community remains unknown. However, this loss is negligible since the relevant

high-level structure is not affected as can be seen in figure 5.2.

5.3 Experiments

In order to further analyze our algorithm we chose a set of ten different networks

of different sizes, ranging from 34 to 498925 vertices. The networks modeled a wide

spectrum of systems. There are social networks, such as the Zachary Karate Club

[246] and the social network of the Software Department (LSI) at the Technical

University of Catalonia (see section 4.3). Scientific collaboration networks such as
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Figure 5.1: Working of the PDB algorithm in the Zachary network. Sub-figure a

shows the initial vertices (labelled with 2) which are seeds for the random walkers

vertices labeled. Sub-figure b shows the initial partition of the network into com-

munities produced by the random walker stage. Sub-figures c and d show different

partitions created by the modularity optimization process. The optimal partition,

whose modularity is maximal, is shown in sub-figure c.

Cond-mat [173] and the Erdös collaboration network 1. Citation networks such as

Scientometrics 2. Affiliation network among Spanish top director boards 3. Network

of relations between words such as WordNet 4. Metabolic networks such as the

C. Elegans [126]. A portion of the Web from the Notre Dame University dataset

[12]. Finally, the last type of network was the movie collaboration 5 network, again

1Erdös Number Project. The network contains scientists with Erdös number less than or equal

to 2 up to year 2002. http://www.oakland.edu/enp/thedata.html
2Network from Garfields’s collection of citation networks. Available at

http://www.garfield.library.upenn.edu/histcomp/index.html
3Data provided by Prof Fabrizio Ferraro, from the project Small Worlds Of Corporate Networks

at IESE Business School, University of Navarra
4Network obtained from the Pajek Network dataset. Available at http://vlado.fmf.uni-

lj.si/pub/networks/data/
5This network is a bipartite network (two-mode). Consequently, vertices have different roles

and thus the structure extracted by the algorithms might be biased. We did not transform it to
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Figure 5.2: Community structure of Zachary network produced by PDB algorithm.

Circles and squares over the individuals denote to who they align to after the karate

club broke up. Those who aligned with the instructor are represented by circles,

and those who aligned with the administrator are represented by squares.

obtained from the Notre Dame University dataset [22]. In all the networks we only

worked with the biggest connex component, removing all multiple relations and

self-reference edges.

Comparing Modularity

Table 5.1 summarizes the highest modularity achieved by Newman’s Fast algorithm

(QN ) [176] and our algorithm (QPBD). For eight out of the ten tested networks

the PBD algorithm produces a higher modularity, and the maximum difference in

favor of the PBD algorithm is in the cond-mat network. Thus, in general the PBD

algorithm yields a slightly better modularity than the Newman’s Fast algorithm.

However, as mentioned in the introduction, there exist in the literature other al-

gorithms based on modularity optimization that also outperform the Newman Fast

algorithm [176]. In table 5.1 we also included the results obtained by the extremal

optimization algorithm (EO) by Duch-Arenas [74]. In this case the maximum mod-

ularity obtained by EO outperforms in two of three cases the modularity obtained

using PDB, and in all the available cases it outperforms the modularity obtained

using Newman’s Fast Algorithm. However, the complexity of the algorithms that

use elaborated search heuristics is superior to the complexity of both Newman’s

Fast algorithm and PDB algorithm. For instance, EO’s complexity is O(n2log2(n)).

Thus, we can conclude that PDB has a good balance between efficiency and quality.

a one-mode network to maintain the maximum of vertices. Thus, the results on this network are

only relevant when speaking about the algorithm’s efficiency
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Network Size (n) QN gN QEO gEO QPBD gPBD

Zachary 34 0.3807 3 0.4188 4 0.3937 4

LSI 139 0.6428 6 – – 0.6604 6

C. Elegans 453 0.40 10 0.4342 12 0.4164 7

Directors Board 598 0.8046 21 – – 0.8273 16

Scientometrics 2678 0.5555 24 – – 0.5629 10

Erdös (2002) 6927 0.6723 57 – – 0.6817 20

Cond-Mat 27519 0.6653 324 0.6790 647 0.7251 44

Word-Net 75606 0.7963 453 – – 0.7885 47

WWW ND 325729 0.9273 2192 – – 0.9272 83

Actors ND 498925 0.7243 2113 – – 0.7297 14

Table 5.1: Comparison between maximum modularity Q and number of communities

g obtained by Newman’s fast algorithm (N), Duch and Arenas Extremal Optimiza-

tion algorithm (EO) and PBD algorithm. Results from EO algorithm are limited to

those published in [74]

Comparing the Number of Communities

Clustering, though, does not only depend on obtaining the partition that maximizes

modularity. The number of communities — or groups — contained in the opti-

mal partition is also very important. In table 5.1 the number of communities is

denoted by gN , gEO, gPBD. We can clearly observe an order gEO > gN > gPBD.

Provided that maximum modularity does not greatly differ between partitions, the

huge differences in the number of communities obtained by the different algorithms

are indeed striking and requires further study.

Provided we assume that modularity Q is a good measure for community struc-

ture, we must take for granted that two partitions with similar modularity are

equally accurate. Thinking otherwise would lead us to the conclusion that modular-

ity is not a good measure. Finding a bogus partition that yielded higher modularity

than a good partition would mean that modularity is not representative of the struc-

ture. Consequently, it could not be used as the fitness variable for the optimization.

However we do not believe that this is the case.

So, if we assume that modularity is a good measure, what happens when two

partitions having very similar modularity have a very different number of groups?

A first approach would be to think that the partition with smaller number of groups

is more general than the partition with the larger number of groups. Thus, par-

titions with smaller number of groups would be, in principle, more interesting for

several reasons. (i) They would provide a more general perspective on the underly-
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Figure 5.3: Modularity Q over the execution of the algorithms for the cond-mat

network. PBD algorithm is shown as the solid line and Newman’s Fast algorithm

(N) as the dashed line. Notice that the number of merge operations required for both

algorithms is different. PBD algorithm requires approximately the 22% of the merge

operations performed by the N algorithm. Both the figure and the inset contain the

same information, although the main figure is plotted in a log scale to magnify the

last steps of the algorithm when maximum modularity is found.

ing structure of the network, since they would be able to find a meaningful partition

at a higher level of the structure. (ii) A small number of groups would simplify the

analysis of the obtained results. And (iii), general or high-order partitions could

always be re-clustered to further analyze the structure of a particular group if a

more detailed — fine-grained — analysis were required. The opposite could not be

done, otherwise the algorithm would have detected the more general partition with

higher modularity.

Table 5.1 shows that PBD algorithm yields more general partitions while having

similar or better modularity. This effect is specially acute in large networks. One

might conclude from the results of the experiments that both EO and N algorithms

undergo an unnecessary over-specialization. For instance, let us we take the optimal

partition of the cond-mat network. PBD provides the highest modularity and the

smallest number of partitions, which is 647, 324 and 44 using EO, N and PBD

algorithms respectively.

Figure 5.3 shows the evolution of Q in the cond-mat network using N and PDB

algorithm. Notice that the modularity obtained by the N algorithm is very close

to its maximum modularity when the number of remaining groups is in the range
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between 40 to 1000. Once the partition contains more than 1000 groups it does not

increase or decrease substantially until the number of groups in the partition reaches

40, at that point, modularity starts to decrease abruptly. This range of stable mod-

ularity contains a partition with 44 groups which is the maximum modularity found

by PBD algorithm. This behaviour is not observed in the evolution of modularity for

the PBD algorithm, which keeps increasing modularity until it gets to the maximum

and then it starts a quick descent. Being in a plateau where modularity is neither

increasing or decreasing significantly might suggest that the search heuristic of N

algorithm could be stuck in a local sub-optimal state.

A more detailed study of the internal behaviour of N and PBD algorithm is

described in figure 5.4, where the evolution of the normalized size of groups to be

merged is depicted. Each merge operation joins group i and j in a new group z.

The size of the two groups chosen by the algorithm to be merged is expressed as

rmo = min(si,sj)
si+sj

. The ratio rmo has values in the range (0.. 1
2 ], when rmo is close to

zero means that there is one group that is clearly bigger than its counterpart. When

rmo = 1
2 both groups have the same size. It is easy to see how the N algorithm

tends to join groups of very different size, whereas the PBD algorithm tends to do

the opposite, i.e. it prefers groups of similar size. Consequently, the N algorithm

produces at the very beginning groups of extremely large size by joining a single

vertice to a very large group, when this group cannot accept more vertices a new

group is started. This behaviour is clearly observed at operation 6000, 10000 and

15000 approximately, creating three massive groups of 13000 vertices and leaving

the rest of groups composed mostly by individual vertices. This might be the reason

why the search heuristic fails to increase modularity in the plateau of figure 5.3.

Approximately from operation 16000 to 26000 this behaviour is not so evident,

where groups of similar same size are often merged. However, the behaviour that

merges very dissimilar groups appears again between operations 26000 and 27000,

overlapping the plateau of modularity. At this point, big groups cannot be merged

obtaining a gain of modularity, therefore, the only possible option left to be explored

by the search heuristic is to merge left-over groups of very few vertices into the

existing big groups. As a consequence, the search heuristic gets stuck in a situation

where changes of modularity are minimum and there is no escape from the sub-

optimal partition. The bias of the N algorithm towards creating very large groups

has also been very recently reported by Danon et al. in [61]. We can see how this

behaviour is not present in the PBD algorithm. The greedy search heuristic used

by PBD algorithm forces the worst group to be the one going to be merged, and

this results in groups having similar sizes. By doing so, the search heuristic has

many possible combinations to explore, avoiding getting trapped too early in a local

sub-optimum as it happened in the N algorithm. That is the reason why the PBD

algorithm is able to find in the cond-mat network a higher modularity partition
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sz = si + sj. The line corresponds to the evolution of modularity.

which also has less groups. As for the EO algorithm, we could not carry out the

same analysis but it is plausible that the resulting large number of groups can be

attributed to its divisive clustering strategy.

In order to analyze with more detail the partitions yielded by the N and the PDB

algorithms the distance between the optimal partitions for the cond-mat network are

calculated. Gustafsson et al [110] reviewed different distance measures to compare

partitions of the same network. Since we want to look into the hypothesis that

the partition yielded by PDB (PPBD) is more general than the partition yielded

by N algorithm (PN ) we chose the mdiv measure, which is the minimum number of

divisions to be applied to partitions A and B to obtain the partition C defined in

[109] as,

C =

|A|
⋃

i=1

|B|
⋃

j=1

(ai ∩ bj) (5.3.6)

Partition C is the union of all possible intersections between the groups in A and

B. We rename C as PN−PBD. The distance between partition PPDB and PN−PBD
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Network Size (n) tN tPBD sPBD

Zachary 34 0.002 0.014 16

LSI 139 0.003 0.015 42

C. Elegans 453 0.026 0.064 118

Directors Board 598 0.038 0.031 125

Scientometrics 2678 1.6 0.320 619

Erdös (2002) 6927 3.14 2.6 2155

Cond-Mat 27519 125.8 11.2 6224

Word-Net 75606 490.6 204.1 38701

WWW ND 325729 10932.1 1775.6 86908

Actors ND 498925 34208.3 3326.3 118897

Table 5.2: Comparison between CPU-time t (in seconds) between Newman’s Fast

algorithm and the PBD algorithm. It also includes the number of random walkers

required to create the initial partition sPBD

is 894, which is the number of divisions to be applied to PPBD in order to obtain

PN−PBD. The distance between PN and PN−PBD is 614. Thus, the total distance

is 1508, which is the sum of both distances. In order to have a baseline comparison

for the distance between PPBD and PN we created a random partition Prand with

the same cardinality as PPBD. The random partition was replicated 30 times and so

was the measurement, the average distance between PN and Prand was 7166.7 with

a standard deviation of 33.65.

Comparing Efficiency

After comparing the quality of the clustering produced by the PBD algorithm we

must turn our attention towards its performance. As we already mentioned, all

design decisions were biased towards improving the efficiency so that the algorithm

could cope with medium and large networks, which other algorithms cannot handle

in reasonable time. Table 5.2 summarizes the run-time (cpu-time) of our algorithm

compared to Newman’s Fast algorithm, which is the reference algorithm due to its ef-

ficiency. We are perfectly aware of the problems related to comparison of algorithms

based on run-time instead of only considering their complexity. In order allow a fair

comparison between both algorithms we implemented them from scratch optimizing

them to the best of our abilities. Needless to say the runs were executed on the same

desktop computer (Pentium 4, 3Ghz) exclusively devoted to the experiment. Table

5.2 shows that PBD is much faster than Newman’s Fast algorithm for networks big-

ger than a thousand vertices. Conversely, the PBD algorithm is slower than the N

algorithm for small networks. This is due to the two sequential processes — spec-
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tral analysis and modularity optimization — that take place in the PBD algorithm.

The difference in execution time heavily depends on the number of random walkers

(sPDB) required for the first stage of PDB algorithm. The smaller the ratio between

network size and the number of random walkers, the faster the PDB algorithm is.

Figure 5.5 shows graphically the relation between network size and the running

time of both algorithms already seen in table 5.2. The PDB algorithm clearly

outperforms Newman’s Fast algorithm, often by one order of magnitude. However,

the asymptotic quadratic behaviour of both algorithms is evident, which lead us to

think that our algorithm cannot scale to very large networks of millions of nodes.

Resorting to parallelization would allow us to analyze networks of a few million

nodes in an acceptable time, however, PDB will undoubtedly become too slow for

very large networks. Nonetheless, it allows to shift the network size threshold far

enough to be useful for medium and large networks. Reduction of approximately

one order of magnitude allows to shift from minutes to seconds, or from hours to

minutes. For instance, the clustering of the largest network we had access to was

reduced from approximately 9 hours to just one.
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5.3.1 Computer-generated Networks

To conclude, we include experiments carried out with the computer-generated net-

works first proposed by Girvan and Newman [101], which have become a common

testbed in the field. Those networks are constructed with 128 nodes divided into

four groups of the same size. For each node 8 edges are deployed. With probability

Pin the edge is connected to a node that belongs to the same group chosen at ran-

dom. Otherwise, the edge is connected to a node that does not belong to the same

group. Thus, the average degree of a node is 16. Accordingly to the nomenclature

of Girvan-Newman, we will use zout, which is the number of inter-community edges

per node. It is important to notice that for zout = 12 the network is totally random,

that is, without community structure. Another important value for zout is 8, since it

marks the boundary between having more inter-community than intra-community

edges. The quality measurement is the fraction of vertices that are correctly classi-

fied, explained in more detail in [176].

In figure 5.6 we can see the results obtained by our algorithm compared to the

results yield by the Girvan-Newman (GN) algorithm based on edge betweenness

[101]. We decided to use the GN algorithm instead of the Newman’s Fast algorithm

since it obtains slightly better results and it is the reference algorithm for this par-

ticular experiment [101]. Although the results of GN outperform those obtained by

the N algorithm it is not a suitable option for medium and large networks due to its

complexity, that is O(n3).

The GN algorithm correctly detects the communities until values of zout = 6 are



5.4. DISCUSSION 77

reached. From this point on, the quality of the communities decreases very quickly.

On the other hand, the PBD algorithm detects the communities very well up to

values of zout = 7, from that point on the performance starts to decay, although the

pace is more steady than in the GN case. As already mentioned, other algorithms

based on modularity optimization perform much better in the computer-generated

networks example. For instance, Duch and Arenas extremal optimization algorithm

[74] starts to decline at zout = 8. However, its increase on clustering quality is done

at the expense of efficiency. So, it is unadvisable in the case of large networks.

5.4 Discussion

In this chapter we have presented an algorithm to extract community structure

from networks by using a combination of different existing methods. First, the

algorithm uses spectral analysis, via the multiple random walker process, to reduce

the dimensionality of the network by creating the initial partition of the network into

communities. Then, a modularity optimization process with an extremely greedy

search heuristic is applied to extract the underlying structure of the network.

Experiments show that our algorithm outperforms Newman’s Fast algorithm

both in clustering quality and efficiency. Newman’s Fast algorithm is the reference

algorithm in terms of efficiency, and while asymptotically both algorithms are O(n2),

PDB algorithm is always faster in computation time for medium and large networks,

as it has been shown in the experiments.

The reason behind this is the reduction of dimensionality provided by the ran-

dom walker process, such that the cost of PBD can be expressed as O(ns) where

s � n. Furthermore, experiments also show that PDB retrieves more general com-

munity structure than other algorithms. The number of existing communities in the

partition with maximum modularity is notably smaller in the case of PBD. This fact

leads us to think that other algorithms tend to unnecessarily over-specialize their

clustering.

In summary, the presented algorithm is an interesting choice when analyzing

medium and large networks. The structure of large networks can be found in rea-

sonable time, from seconds for a network of 27k vertices to less than one hour for

a network of 500k vertices. The gain in efficiency does not come with a loss in

the quality of the clustering as the maximum modularity obtained by the algorithm

is comparable to the reference algorithms in the literature. Throughout the back-

ground chapters of this thesis we saw that complex social systems, such as multi-

agent systems, can be characterized by networks. The analysis of these networks

can provide useful knowledge both at the scale of individuals and at the scale of the

system. As a matter of fact, one must take into account that the existing knowledge

of a system is not only contained in its constituents but rather on the relationships
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between constituents of the system [134]. Consequently, the need to take structure

into consideration is out of question for a comprehensive understanding of the sys-

tem. With that in mind, we devised two different algorithms that extract knowledge

only resorting to the structure.

In the previous chapter we showed how the network structure can be used to infer

the relevance and reputation of an individual from its position in the network. In the

current chapter we used the network topology to identify the underlying community

structure; groups as well as relationships between those groups can be revealed by

analyzing the structure through clustering.

The knowledge retrieved by the methods here presented, as well as by other

related methods in the literature, can give a better understanding of the system

under study. However, our aim is not limited to a descriptive analysis, our goal is

to use structure to retrieve information that is inherently social so that it can be

used by multi-agent systems designers and the agents themselves to build an open,

stable and full-fledged artificial societies. Needless to say that the two algorithms

presented do not suffice to achieve such an ambitious goal. However, finding social

aspects such as reputation and groups membership can contribute to leverage the

uncertainty and complexity of open systems like artificial societies.



Part III

System Dynamics and Structure
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Chapter 6

Emergence of Conventions

In the previous part of the thesis, structure was used to extract relevant knowledge of

the system which is embedded in relationships rather than in individuals. Therefore,

one might argue that some social aspects of systems must be tackled by looking at

the pattern of interactions, that is to say, the topology of the network. Despite

the trivial look of this statement one must consider it in contrast to the common

approach to the study of systems, where the focus is placed on the reductionist study

of the components taking — wrongly — the system as the simple addition of all its

components, and so, neglecting the interactions between those components.

Lazebnik [147] clearly illustrated this problem by wondering whether a biologist

could ever fix a broken radio; “what matters for the radio — as well as for the cell or

organism — is not only what is there [components] but, perhaps more importantly,

how they are connected”. Lazebnik remark is not limited to Biology though, many

other areas of knowledge suffer from the same methodological bias.

Analysis of the structure allows us not only to retrieve hidden information about

a given system, but also to understand its internal dynamics. In this part of the thesis

we want to emphasize the role played by the structure in the system’s dynamics.

The pattern of interactions to be followed by the individual actors is determinant

in what respects the long-time behaviour of a dynamical system, and multi-agent

systems are no exception.

6.1 Description

The study of social conventions in human societies is more than forty years old

[149, 214], see section 2.3 for a comprehensive review. Social conventions provide

society with rules of behavior in which all agents agree, and so they make easy to

deal with situations where several individuals may have conflicting goals. In this

sense, multi-agent systems (MAS) are not different. They also need some (either ex-

81
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plicit or implicit) rules to avoid conflicts and to facilitate interactions among agents.

One means of implementing such rules in multi-agent systems are conventions. Es-

sentially, a convention gives a common choice of action to all agents in conflicting

situations.

Two ways of introducing conventions in MAS have been explored: off-line design,

where every agent has the conventions “hard-wired” from the beginning, and the

on-line design, also known as emergent design, where the collective of agents decides,

through interaction, which are the most suitable conventions given the current state

of the system. The former design strategy is clearly unsuitable in dynamical and

changing environments, where one cannot know a priori which will be the conditions

under which the system will operate (this has been argued in [203, 221]). In this

case, the dynamical nature of on-line conventions appears to be most appropriate.

It is not difficult to think of other situations where these non-fixed conventions may

be an advantage, for example in the case of agents with changing goals.

In the simplest multi-agent system one can think of, every agent may interact

with every other agent. This means that the underlying topology is a network with

an all-to-all connectivity pattern, that is, a complete network. However, this is not

very realistic. It is far more accurate to assume some restrictions in the pattern

of interactions that an agent may develop. We can think of different possibilities:

Regular graphs, lattices, etc. This has already been (partially) analyzed, since

emergence of conventions in MAS with topological restrictions has been studied in

regular graphs and lattices [135, 136, 221]. This work is quite interesting, since

it shows that the underlying MAS topology is important in the efficiency of the

emergence of conventions; however, regular topologies are not very realistic either.

If we pay attention to the topology of real networks, we will find out that most of

them have a very particular topology: they are complex networks with non-trivial

wiring schemes. This particular topologies are found in many empirical systems as

mentioned in section 3.2.

One of the most suitable environments for a MAS, the Internet, is among the

most prominent complex networks found in the real world. Complex networks are

well characterized by some special characteristics (see subsection 3.2.1) such as the

connectivity distribution (either exponential or power-law) and the small world prop-

erty [181, 232].

In this chapter we study the efficiency of the emergence of social conventions in

MAS with a complex underlying topology. We followed the conceptual framework

introduced by Shoham & Tennenholtz [201, 202, 203] and our measure of efficiency

will be one of those introduced in the work of Kittock [135]: the time it takes to

reach a 90% of the agents in the system to use the same convention.
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6.2 Network Models

There are several models of graphs we are going to use to represent the underlying

pattern of interaction between agents in our MAS.

As we pointed out in section 3.2, recent discoveries on empirical networks lead

us to think that regular or complete graphs are not the most realistic environment

for MAS. Complex networks [12, 13, 22, 53, 181, 227] are found to be most suitable

for MAS, since real systems composed by autonomous entities without a global

planner form complex networks. So, its natural to choose those networks to model

the underlying pattern of interactions between agents. The graphs we will use as

the pattern of interaction between agents are:

• Complete graph KN , it the complete N -nodes graph, where every node is

adjacent to the all the nodes but itself. Thus, connectivity k is N − 1. The

number of edges of the graph is N(N−1)
2 , which is a clearly unrealistic when

compared to empirical networks.

• Regular graphs or lattices CN,k, it is the graph on N nodes such that node i

is adjacent to nodes (i + j)modN and (i − j)modN for 1 ≤ j ≤ k, where k is

the connectivity.

• Small world graphs WN , these are highly clustered graphs (like regular lattices)

with small characteristic path lengths (like random graphs) [232, 227]. This is

the small world property. We will choose the Watts-Strogatz model as model

of small world graphs.

• Scale-free graphs Sγ
N , these are graphs with a connectivity distribution P (k)

(the probability that a node has k adjacent nodes) of the form P (k) ∝ k−γ . We

will choose the Albert-Barabási extended model as model of scale-free graph.

As it was mentioned in subsection 3.2.1, there are many models of complex

networks. We have chosen Watts-Strogatz [232] model for small world graphs and

the Albert-Barabási [10] extended model of scale-free graphs. We decided for the

later since it gives us some control over the exponent γ of the graph. The underlying

idea is that of growth with preferential connectivity, where the most “popular” nodes

get most of the links. This model was built on a simpler one [22, 23], able to generate

graphs with exponent γ = 2.9 ± 0.1 (by setting p = q = 0 in the algorithm detailed

in section 3.2.1 we recover this previous model).

Albert-Barabási extended model of scale-free graphs have not the small-world

property, although the graphs are random. We will see below that it is of interest

to us to study the consequences of these properties (small world and randomness)
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separately. So we have chosen another graph model to work with: The Watts-

Strogatz model. This model starts with a CN,K graph and then rewires each link at

random with probability P . In fact, for P = 0 we have WN = CN,K and for P = 1

we have a completely random graph (but not scale-free). For intermediate values

of P there is the “small world” region, where the graph is highly clustered (which

means it is not random) but with a small characteristic path length (a property

shared with random graphs). The Watts-Strogatz model does not generate scale-

free graphs, since the distribution P (k) associated to these graphs is exponential

[23].

6.3 Social Conventions in MAS

First we will describe some general properties of the systems we are going to study.

Details will require separate subsections. The MAS we deal with are extremely

simple, but also necessarily simple if we want to get to any conclusion about its

dynamics. The use of these simple settings in MAS theory has been largely discussed

in [203, 221], to which we refer for more information.

Our MAS will consist of N agents on a graph, where every agent will be located

on a node of the graph. Its adjacent agents will be called its neighbors. Every

agent will be in one out of two states (or actions), called A and B. The system will

evolve in time, and at each time step one agent will be selected at random, for state

updating 1. Different rules to update agent’s state will define different systems. In

this note we will study two different rules: the generalized simple majority rule and

the highest cumulative reward rule (both detailed in the following subsections).

Quoting Shoham and Tennenholtz [203] “A social law is a restriction on the set

of actions available to agents. A social law that restricts the agents’ behavior to one

particular action is called a social convention.” In our case a social convention will

be reached if all the N agents are either in state A or in state B. From [135] we

will get the performance measure we use to evaluate how fast conventions arise in

our systems, it is the convergence time Tc: the convergence time for a given level of

convergence c is the earliest time at which Ct ≥ c, where Ct is the convergence of

a system at time t, that is, the fraction of agents using the majority action (either

A or B). In this note we will focus on the study of the average time to a fixed

convergence (we set c to 90%, following [135]).

1The dynamics we use is asynchronous, following previous work [135, 136, 203]. We will depart

from Walker and Wooldridge formalization [221] because the dynamics they use (their function r,

used to define a run) imposes a synchronous dynamics, where all agents interact at once. This is, at

least, problematic. It is well known that some “emergent” properties of synchronous systems are not

due to the system itself, but to global correlations introduced by this synchronous update [120, 153].
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6.3.1 Generalized Simple Majority (GSM)

We generalize herein the simple majority rule, as was defined in [221]. We have N

agents on a graph, so we have a well defined neighborhood for every agent. The

initial state of the system is a random state (either A or B) for every agent. Now,

at every time step one agent, say the j-th, is chosen randomly. Let us suppose that

agent j has k neighbors and that kA neighbors are in state A (so there are k − kA

neighbors in state B). If agent j is in state S, let S̄ be the complementary state.

Thus, agent j will change to state S̄ with probability

fβ(kS̄) =
1

1 + e2β(2kS̄/k−1)
(6.3.1)

This rule generalizes simple majority since for β → ∞ we recover the change of state

only when more than k/2 neighbors are in state S̄. (see figure 6.1). There is no
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Figure 6.1: Generalized simple majority rule: If an agent chosen for updating is

in state B and has 25 neighbors, this figure shows how the probability of changing

state varies as a function of the number of neighbors in state A, for different values

of β.

theorem assuring convergence in the emergence of conventions in this system, but we

can provide some analytical evidence that this is the case. We use what in physics

is called a mean-field argument [185]. Let NA(t) be the number of agents in state A

at time t and ρ(t) = NA(t)/N be the density of agents in state A. We will assume

the following homogeneity condition: for every agent with k neighbors, the number
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Figure 6.2: Evolution in time of the density of agents in state A for the system

defined in subsection 6.3.1. Several graphs have been used (N = 104 and β = 10):

KN (thick solid line), CN,12 (solid line), S2.5
N (dot-dashed line, m0 = 4, m = 2,

p = q = 0.4), S3
N (long-dashed line, m0 = 7, m = 6) and WN (dashed line, P = 0.05

and K = 12, inside the small world region). We observe a fast convergence in the

graphs that fulfill the homogeneity condition, that is, the scale-free graphs and the

KN graphs.

of neighbors in state A is kA(t) ' kρ(t). This condition is completely fulfilled for

KN graphs (obviously), and approximately fulfilled for Sγ
N graphs and WN graphs

with P → 1, since these are random graphs. Thus, the mean-field equation for ρ(t)

can be written as

∂ρ(t)

∂t
= (1 − ρ(t))fβ(ρ(t)) − ρ(t)fβ(1 − ρ(t)) (6.3.2)

that is, the variation of ρ(t) is the fraction of agents in state B that change to

state A (first term, right side of the equality) minus that fraction of agents that

switch form state A to state B (second term, right side of the equality). After some

arrangements, this equation reads

∂ρ

∂t
= −ρ +

1 + e2β(2ρ−1)

2 + e−2β(2ρ−1) + e2β(2ρ−1)
(6.3.3)

finally, with the change x(t) = 2β(2ρ(t) − 1) we get to

∂x

∂t
= −x + 2β

ex − e−x

2 + ex + e−x
(6.3.4)
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We want to study the stable fixed-points of x(t), since these will give us information

on the final state of the system. Thus, we must find the solutions of ∂tx(t) = 0.

It can be shown that, for β � 1 the only stable fixed-points of this equation are

x1 = −2β and x2 = 2β, that is, ρ1 = 0 (state B is the reached convention) and

ρ2 = 1 (state A is the final state of all the agents). Let us point out that this result

implies the convergence to a social convention in systems using the simple majority

rule, as defined in [221]. Initial conditions will break the symmetry of the solutions,

that is, an initial fraction of agents in state A slightly larger than the initial fraction

of agents in state B will get the system to a ρ = 1 stationary state, and vice-versa

(see figure 6.2). In this work we will not study the effect of β, setting β = 10.

6.3.2 Highest Cumulative Reward (HCR)

The framework in which we will work here was introduced by Shoham and Ten-

nenholtz [201, 202, 203] some time ago, though it is in frequent use nowadays

(see [35, 50, 154, 63] for example). In this work we will adapt from [203] the defini-

tions and theorems we need, not dwelling on justifications of this formal framework

(it was eloquently done in [203]). We will focus on coordination games [149, 202].

A payoff matrix G 2×2 defines a 2-person 2-choice symmetric coordination game

if G has the form

Agent i

Agent j

A B

A x u

B v y

Figure 6.3: Payoff Matrix of the Game G

where x > v and y > u

Essentially the idea is that every player has two available actions, say A and

B. If both players play A, both players receive a payoff of x. If they play B they

receive a payoff of y. When the players do not agree, for example, player 1 plays

A and player 2 plays B, the former receives a payoff of u and the latter a payoff of

v; the remaining situation is symmetric. The condition on the entries of G makes

clear that to play the same action is the best choice. Specifically, we will use the

pure coordination game [149] G, where x = y = +1 and u = v = −1.

Once defined the game we need to define the players. Our MAS will be composed

of N agents (every agent is a player) that will interact with other agents, playing the

game G once per interaction. What we are interested in is whether the dynamics of

this system makes all the agents reach a social convention. In our particular setting,

this means that we want to know whether all the agents will end up playing one of
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the two possible actions of the game G, say A and B.

Following Kittock [135], every agent, say the k-th, will be characterized by a

memory Mk of size m (same size for all the agents) and an action ak (to play the

next time agent k is selected, so the value of ak is either A or B). The memory Mk

will record some information on the m last plays of the agent k: The value of the

position i of the memory Mk will be a tuple < ai
k, p

i
k, t

i > where ti is the time the

i-th play took place, ai
k is the action played by agent k and pi

k is the payoff received

(1 ≤ i ≤ m). However, in this work we will not study the effect of memory, setting

M = 1.

We must also define the dynamics of the system (a variant of n−k−g stochastic

social games [203] where we will take into account the underlying topology). At

every time step t, a pair of agents will be selected to play the game G, where one of

them will be randomly chosen and the other will be one of its neighbors, according

to the underlying graph. They will receive a payoff (either +1 or −1) depending on

their actions. Let us assume that at time t, agents k (with memory Mk and action

ak) and l (with memory Ml and action al) are chosen to play. Every agent will

receive a certain payoff, say pk and pl. Now, agent k must decide which action it

is going to play next time it is chosen, as a function of its memory Mk, the action

ak played and the payoff received pk. It uses the Highest Cumulative Reward rule.

Agent k will compute the payoff received for using action A in the last m plays

in which it has been involved: P k
A =

∑

i:ai
k
=A pi

k, where P k
B is defined in the same

way. Agent k will add pk to either P k
A or P k

B , depending on ak. Now, agent k can

decide: Next time it is chosen to play, the action chosen by the agent k will be

either A if P k
A > P k

B , B if P k
B > P k

A or ak otherwise. Finally agent k updates its

memory, deleting the oldest entry and adding the tuple < ak, pk, t > (agent l will do

the same thing, the rest of the system will do nothing). For the system as defined

above Shoham and Tennenholtz [203] provided a general theorem2 that guarantees

the convergence of our system to a stable social convention.

Kittock [135] studied numerically the efficiency of the emergence of conventions in

regular graphs CN,K and KN . His main result was that the underlying topology has a

profound effect on the efficiency with which conventions emerge, and he conjectured

that this efficiency depends essentially on the diameter of the graph.

2Theorem 12 in [203]. Given a 2-person 2-choice symmetric coordination game with dynamics

as defined and using the HCR action selection rule: i) ∀ε > 0 there exists a bounded number Γ,

such that if the system runs for Γ iterations then the probability that a social convention will be

reached is greater than 1 − ε. ii) Once the convention is reached, it will never be left.
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6.4 Convergence Time of Social Conventions

Once we know that social conventions will emerge in the systems we are interested

in, we would like to know how fast these conventions will be reached. From our

numerical work (see figures 6.4 and 6.5, these figures are representative of results

obtained with different sets of parameters) we may conjecture that T90% = O(N3) for

CN,K graphs (which was already observed by Kittock [135]) and T90% = O(NlogN)

for complex graphs and KN graphs (this is the lower bound predicted analytically

in [203, 212]) for the HCR rule. Results for the GSM rule are T90% = O(N3) for

CN,K graphs and T90% = O(N) for complex graphs and KN graphs. Besides, we

observe that an underlying small world graph makes the system less efficient than

an underlying scale-free graph, despite they have the same behavior.
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Highest Current Reward Rule

Figure 6.4: HCR rule: T90% vs. N , averaged over 25 samples for each N . Several

graphs have been used: KN , CN,12, S2.5
N (m0 = 4, m = 2, p = q = 0.4) and WN

(P = 0.1 and K = 12, inside the small world region). All the graphs have the same

average connectivity per node (except KN , for obvious reasons). In all cases m = 1.

Kittock’s conjecture provides us with a partial explanation of the observed be-

havior. According to [135], the efficiency of the emergence of social conventions

depends on the diameter of the graph. The diameter of CN,K grows linearly with N

[227] but the diameter of complex graphs grows logarithmically with N [181], hence

the difference between the growth of T90% in regular graphs and complex graphs.

However, the precise relation between the linear growth of the diameter in regular
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Figure 6.5: GSM rule: T90% vs. N , averaged over 25 samples for each N . Several

graphs have been used: KN , CN,12, S2.5
N (m0 = 4, m = 2, p = q = 0.4), S3

N (m0 = 7,

m = 6, p = q = 0) and WN (P = 0.1 and K = 12, inside the small world region).

All the graphs have the same average connectivity per node (except KN , for obvious

reasons). In all cases β = 10.

graphs and the O(N 3) behavior of T90% for both rules, and between the logarithmic

growth of the diameter in complex graphs and the O(NlogN) behavior of T90% for

the HCR rule, O(N) behaviour for the GSM rule, remains to be fully justified by

means of analytical arguments.

Now, the efficiency of the emergence of social conventions in systems with un-

derlying scale-free graphs is almost as good as with KN graphs, despite having a

constant (with respect to N) average connectivity. Notice that KN are optimal in

respect to T90%, provided Kittock’s conjecture is correct, since this quantity depends

on graph diameter and this equals 1 for KN graphs. Besides, underlying small world

graphs are less efficient than scale-free graphs, despite the same behavior with re-

spect to N . This is so because what is important here is the randomness (in the

sense mentioned above) of the scale-free graphs we have used, since randomness

reduces the graph diameter.

However, the small world property seems to have no effect on T90%. We may

perform some experiments to test this hypothesis. The Watts-Strogatz model allows

us, by means of the parameter P , to go from small world graphs (small P ) to random
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Figure 6.6: T90% vs. P for systems using the two different action update rules

studied in this note, with underlying graphs generated with the Watts-Strogatz

model. Parameters are N = 104 and K = 12 (β = 10 for the GSM rule, m = 1 for

the HCR rule).

graphs (P → 1) with an exponential P (k). Thus, measuring T90% on the Watts-

Strogatz model with varying P will make clear the importance of randomness.

We see in figure 6.6 that T90% decreases with P , without noticing the small

world zone for small P : The graph becomes more and more random and the system

becomes more and more efficient. This fact makes clear, again, that the diameter

seems to be the important factor in the efficiency with which conventions are reached.

Thus, our results are fully consistent with Kittock’s results.

6.5 Discussion

In this chapter we defined a simple MAS with which to study the efficiency of the

emergence of social conventions in complex networks. On the one hand we have

defined MAS with the action update rule called the generalized simple majority

rule, providing analytical evidence of convergence to a social convention, and, on

the other hand, we have studied the well-known MAS with the highest cumulative

reward rule as action update rule. On both systems we have performed a numerical

study of T90% as a function of N and, in graphs defined according to the Watts-

Strogatz model, of P . Our results on both systems are consistent with the hypothesis
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that the diameter of the graph underlying the MAS is of essential importance in the

efficiency with which conventions are reached [135]. We have found a topology that

makes the system as efficient as the KN graph but at a lower cost, where the cost

is the average number of links per node.

Some questions are still open: It remains to be analytically justified the precise

relation we have found among the growth of the diameter for different classes of

graphs and the behavior of T90%. The almost identical behavior of T90% for the

systems studied should also be explained, since the substantial differences between

both systems are obvious from their definitions.

Despite the open questions just mentioned, the effect that particular structures

has on the dynamics of the system is evident. The time for a convention to emerge —

agents coordinating themselves in a certain action — deeply depends on the diameter

of the network modeling the interactions between agents. Complex networks are very

adequate models of graphs for that matter; they display a short diameter that grows

logarithmically with network’s size, therefore, favoring the emergence of coordination

in reasonable time even in the case of systems composed by tens of thousands of

agents.

There are many ways to extend the work introduced in this chapter. This study

may be repeated with cooperative games, since these games were also considered by

Shoham and Tennenholtz [201, 202, 203] and Kittock [135]. Furthermore, prelimi-

nary results indicate that the behavior of cooperative games in complex networks is

far from trivial [2, 227]. Also, it would be interesting to study MAS playing stag-

hunt games [216, 190] in complex networks. Another possible extension, which is

actually addressed in the next chapter, is to consider coordination when coordination

in a given convention Pareto-dominates the other. Thus, agents would be better off

choosing the efficient action in terms of payoff. However, this might not be always

possible resulting in coordination in a sub-optimal convention. Next chapter stud-

ies how the underlying topology also influences the convention which is eventually

established by the agents.



Chapter 7

Emergence of Efficient Social

Conventions

7.1 Description

In the previous chapter we studied the emergence of conventions from local coordi-

nation processes without a central authority. We showed that the elapsed time for

the convention to be established depended on the underlying structure of interac-

tions, in particular, on the diameter and characteristic path length of the network.

In this chapter we further develop and extend previous work to address how and

under what conditions emerging conventions are also socially efficient, i.e. better for

all agents than potential alternative conventions.

The existence of norms, and by extension, social conventions is perhaps one of the

most fundamental problems that social sciences have ever tackled [27]. Intuitively,

a social convention might be regarded as any rule of behavior, that is, a behavioral

constraint [221]. As such, they simplify people’s decision making problem by dic-

tating how to act under certain situations. Therefore, social conventions help to

reduce the complexity and uncertainty, specifically, when the environment is open

and dynamic. Which is exactly the situation were Distributed Artificial Intelligence

and Artificial Societies dwell.

Shoham and Tennenholtz [201] introduced the notion of emergence of conven-

tions, as opposed to those conventions designed a priori by a central authority. A

group of agents that through the game’s payoff were able to coordinate themselves in

a certain action, which with time, turned normative, since deviation from that action

was sanctioned by game’s payoff. They showed that self-coordination can appear

without a central authority, thus, that social convention can emerge from disorder.

Since then, many researchers have studied and improved his seminal work, proposing

other strategies besides HCR [221], studying the time needed before the convention

93
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is established [135] and adding complex interaction patterns among agents, as seen

in the previous chapter and in [63, 64].

As anticipated in the previous chapter’s discussion, an important question re-

mains open: When two potential different conventions exist which one will be estab-

lished at the end? This question is not applicable to the original work of Shoham and

Tennenholtz [201], since the game was a pure coordination game, where no action

Pareto-dominates the other. Nevertheless, the question applies to all coordination

games where one action is more efficient1 than the other. The discussion in social

sciences gives no clear answer to why and under what conditions efficient conven-

tions may prevail. As Bendor and Swistak [27] pointed out, there are at least two

conflicting positions in sociology, the strong functionalism thesis and the rational

choice view. Strong functionalism claims that norms and conventions exist because

they are functional for the group, that is, they yield optimal collective outcomes.

According to this perspective, the system should always end up in an efficient con-

vention. However, the functionalist approach has been criticized for its lack of a

microfoundation. Adherents of the rational choice view on norms argue that indi-

viduals adopt norms only when it serves their self-interest to do so. This includes the

possibility that mechanisms such as social control may stabilize conventions that are

an individually efficient response to the given constraints, but are socially inefficient.

7.2 Formal Model

We will follow the conceptual framework introduced by [201], already used in the

previous chapter.

7.2.1 The Coordination Game

A set of N agents must choose to play one of two possible actions: either A or

B. Accordingly to its current action, or state, an agent interact with its neighbors

receiving an outcome defined in payoff matrix G.

Agent i

Agent j

A B

A x u

B v y

Figure 7.1: Payoff Matrix of the Game G

1The action that Pareto-dominates the others is socially efficient, since it is better for all agents

than potential alternative action
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The payoff matrix G defines a 2-person 2-choice symmetric coordination game

provided that x > v and y > u.

The condition on the entries of G makes clear that to play the same action

is the best choice. It is trivial to demonstrate that the game G have two Nash-

equilibrium, both agents playing either A or B. Most work has focused in the study

of pure coordination games: where x = y = +1,v = u = −1 [221, 135, 203, 63].

Our approach differs from related work since we will not restrict ourselves to pure

coordination games.

Coordination in action A will be at least as profitable as coordination in action

B: x ≥ y. Thus, game G is defined as follows: v = u = −1, y = +1, and

x = α provided that α ≥ 1. When α > 1, coordination in B is a sub-optimal

solution since there exists a Pareto-efficient solution that Pareto-dominates B, which

implies, coordination in action A. Therefore, coordination in (A,A) or (B,B) are

still two Nash-equilibrium solutions of the coordination problem, but, depending on

α, coordination on A will be more efficient than coordination on B.

7.2.2 Action Selection Rule and Dynamics

Our MAS is composed of N agents that interact only with its neighbors, playing

the game G once per interaction. Every agent, say the kth, has memory Mk that

records the M last interactions of agent k. The value of the position i of the memory

Mk is the tuple 〈ai
k, p

i
k, t

i〉, where ai
k stands for the action played by k, pi

k stands for

the payoff received after paying action ai
k, and ti denotes the time the interaction

took place. The initial action of the agents is set randomly with a probability rB ,

which is the density of agents playing action B in the beginning.

Following [201] we will use the Highest Cumulative Reward (HCR) action selec-

tion rule. Intuitively HCR says: if the accumulated payoff obtained from playing

A is bigger than that from playing B then keep on playing A, otherwise change to

action B. The HCR rule is very appropriate since it provides: 1) Locality: the se-

lection function only depends on the agent’s personal history. No global knowledge

of the system is required, not even the payoff matrix of the game. 2) Adaptability:

the agent learns from its experience without assuming further cognitive capabili-

ties. These characteristics are very important in complex and open systems, such

as MAS.

The dynamics of the system are as follows. At each time step t, an agent k

is randomly chosen. Once the agent is chosen, or activated, it plays the game G

with an agent randomly chosen from k’s neighborhood, say agent l. The result of

the interaction is stored into agent k’s memory Mk, removing the oldest entry if

necessary. Finally, agent k must decide whether to change its action or not. To do

so it uses the Highest Cumulative Reward rule (see section 6.3.2).
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The system ends once all agents are playing either action A or B, which means,

that a convention on either A or B have been established. Notice that, unlike what

was done in the previous chapter, the system does not stop until the 99% of agents

are coordinated playing the same action. In the previous model (chapter 6) the

system stopped once the 90% of agents were playing the same action. Following the

terminology proposed in [135], the convergence time is T99%, instead of T90% as it

was in the previous chapter.

7.2.3 Underlying Topology

In a similar fashion as it was done in the previous chapter, several models of graphs

are used as the underlying topology for our MAS. These graphs determine each

agents’ neighbourhood. These models correspond to those used in chapter 6 with a

couple of exceptions: 1) the extended Albert-Barabási [10] model of scale-free graphs

has been replaced by the Barabási-Albert model [22]. And, 2) the complete graph

KN has been replaced by a random graph RN [81].

• Random graphs: R
〈k〉
N , where N is the number of nodes, and 〈k〉 is the average

connectivity, that is, the average size of node’s neighborhood. Random graphs

have a clustering coefficient that tends to zero, and the average path length

grows logarithmically in function of N , the number of nodes. We chose the

classical model of random graphs of Erdös-Rényi [81]

• Regular graphs: Ck
N , regular graphs display an extremely high clustering co-

efficient, while its average path length and diameter grows linearly. Which

means, that for big graphs the average path length is very long, which does

not match with networks empirically studied. However, regular graphs display

the close-knit property due to its high clustering coefficient, which does match

with empirical studies.

• Small world graphs: W
〈k〉,p
N , these are highly-clustered graphs (like regular

graphs) with small average path length (like random graphs). This is the

small world property. We chose the Watts-Strogratz [232] model as model of

small world graphs. p is the rewiring probability in the Watts-Strogatz model.

• Scale-free graphs: S
〈k〉,−γ
N , these are graphs with a connectivity distribution

P (k) of the form P (k) ∝ k−γ . The connectivity degree, the number of neigh-

bors of a node, decays as a potential law. This favors the so-called fat-tail

phenomena, that is few nodes with an extreme high connectivity. The cluster-

ing coefficient of the scale-free network is much smaller than the small world

graphs as shown in table 7.1. Unlike previous chapter we chose Barabási-Albert

model [22] as a model of scale-free graph.
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d cc apl

C10
1000 100 0.666 50.450

W<10>,0.1
1000 8 0.492 4.480

S<10>,−3
1000 5 0.0433 2.963

R<10>
1000 5 0.0081 3.269

Table 7.1: Graph characteristics: d is the graph diameter, cc is the clustering coeffi-

cient and apl is the average path length. The order of the graph is 1000 nodes, and

the average connectivity 〈k〉 is 10.

As we have repeatedly mentioned throughout the thesis (specially in section

3.2), recent studies on empirical networks show us that neither regular nor random

graphs appear in nature. Noticing this, Delgado et al [63, 64] studied the effect

of complex networks (small world and scale-free networks), based on previous work

of [201, 135]. The most relevant conclusion was that complex networks where as

efficient as the complete graph in terms of time to reach a convention. Delgado

[63] showed empirically that the emergence of a convention is almost linear for

complex graphs compared to the cubic (O(N 3)) for regular graphs, already shown

by [135]. We follow Delgado [63] approach and use realistic network topologies as

the underlying agent’s interaction pattern.

At this point, it is important to remark that many empirical social networks such

as the collaboration network among actors, co-authorship networks in Mathematics

and Neuroscience and many others are classified as scale-free networks. This is be-

cause its connectivity distribution decays as a potential law, although an exponential

cut-off is also present. However, unlike many scale-free models, these empirical social

networks also exhibit a very high clustering coefficient: 0.79, 0.59, 0.76 respectively.

Table 7.1 summarizes the clustering coefficients and their characteristic path

lengths of the graph models used in the experiments. Notice that empirical social

networks are much more clustered than scale-free networks yield by the Barabási-

Albert [22] model. But we still use this model since scale-free models are focused on

reproducing the connectivity distribution of a network rather than its clustering co-

efficient. This fact must be kept in mind while analyzing the results and conclusions.

See section 3.2.1 for a review on complex networks.

7.3 HCR-Model Experimental Results

First of all we will introduce a classification of the graphs in terms of their clustering

coefficient. Regular and small world graphs will be called highly-clustered graphs,

and scale-free and random graphs will be called low-clustered graphs. For the sake of
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Figure 7.2: Ratio of conventions converging to action B. The x-axis shows the

initial density of agents playing action B, rB , ranging from .05 to .95. The y-axis

shows the ratio of B-conventions, that is, the number of replicas that ended up in

all agents playing B over the total number of replicas (20). In sub-figure a) there is

no efficient convention, α = 1. In sub-figures b) and c) all agents playing action A

which is the efficient convention (α = 3
2 and α = 2 respectively).

clarity we did not include results on random graphs in the figures, since they behave

as scale-free graphs.

Also before going into the details we must mention that one can see two clear

phases: 1) all the replicas converging to A, and 2) all the replicas converging to B.

There is as well a space between these two phases where the system converges, with

some replicas going to A and some to B, which we call transitional space.

This space is wider or narrower depending on the underlying topology and α.

There is a critical point r∗B that sets the boundaries between the two phases. The

transitional space can be defined as ε, such that the result is: r∗B ± ε. It is straight-

forward to see that the transitional space is narrow for almost all the cases. This

fact led us to suspect a clear phase transition scenario. However, when α = 1 and

the underlying topology is a regular graph the transitional space is so wide that it

might not be considered as a phase transition. we provide some explanation about

this behaviour in section 7.5.

Now, let us comment on the results of the experiments with the HRC model. On

one hand, we have the results when there is a pure coordination game. That is, when

coordination on action A is as efficient as coordination on action B since both yield

the same payoff. These results are displayed in sub-figure 7.2.a. When the initial

number of agents playing B is less than half the population, that is, rB < 1
2 , the

system ends up establishing the convention on B. And, when rB > 1
2 establishing

the convention on A. For instance, when rB = .65 the system tends to converge to

convention B regardless of the underlying topology. The ratio of B-conventions is



7.4. CONVERGENCE TIME 99

1.0 for random, scale-free and small world graphs. And it is 0.9 for regular graphs,

which means that 18 of 20 replicas ended up on B (still in the transitional space).

On the other hand, we obtain the results when coordination on action A is more

efficient than B, which is the case shown in sub-figures 7.2.b and 7.2.c. We will use

an example to make clear what happens with the results in the case of α > 0. Let
3
4 of the population follow the B action, and 1

4 follow the A action. In this case,

although B is the initially chosen action for most of the agents, coordination in A

is more efficient since yields a better payoff. So, which will be the final convention

agreed by the whole population? The answer depends on 1) how much better off, i.e.

more efficient, is action A over B, denoted by α. And 2) the underlying topology. If

α = 3
2 (sub-figure 7.2.b) the final convention will be B when the underlying topology

corresponds to a random or scale-free graph. It will be A with a regular graph, and it

could be both with a small world graph. By increasing the efficiency of coordination

on A to α = 2 (sub-figure 7.2.c) both small world and regular graphs converge to

convention A, whereas random and scale-free graphs still converge to convention B.

The explanation behind this result is a bit surprising, low-clustered graphs seem very

sensitive to the initial population density, whereas highly-clustered graphs behave in

the opposite way. That is, they are more sensitive to the efficiency of a particular

action.

From these results one can come up to the following conclusion: low-clustered

agent communities where a convention already exists will not be infected by a set

of agents who play a new action, even though the new convention is more efficient.

Conversely, highly-clustered agent communities can be infected by a new action if

the new action is more efficient, replacing the current convention by the convention

on the efficient action.

Therefore, highly-clustered agent communities are more innovative, or adaptive,

since a new action can spread and finally be established as a convention. The

drawback would be that this community would be unstable due to its receptiveness to

new actions. Full coordination would not exist during the transient period prior the

new convention is finally established. In contrast, low-clustered agent communities

are very stable since the infection with a new convention is unlikely to happen,

but, on the other hand, they are reluctant to adopt new actions even though these

new action are more efficient. In this way, they become very conservative and static

communities. We must remark that studies on empirical social networks have shown

that these type of networks are very clustered [11].

7.4 Convergence Time

We will not provide a proof of the system’s convergence. Nevertheless, throughout

all the simulation runs, with their corresponding replicas, the system has always
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Figure 7.3: Convergence time (T99%). The value is the mean over 20 replicas. The x-

axis shows the initial density of agents playing action B, rB , ranging from .05 to .95.

The y−axis shows the number of interactions (steps) before reaching a convention.

Note the logarithmic scale. In the left sub-figure both conventions, A or B. In the

right sub-figure A is the optimal convention since α = 2.

converged to a convention with an upper bound of O(N 3).

On the left part of figure 7.3, α is set to 1. Therefore both conventions are

equally efficient. It can we observed that the regular graphs takes much longer to

converge than the rest of graphs. This fact is completely consistent with the findings

of [135] and [63]. Notice the existence of peaks in rB = 1
2 in all the graphs except

the regular ones. These peaks are close to the critical point r∗B = 1
2 where a phase

transition takes place. This is a typical behavior when the system is close to a

transition boundary, it takes longer to converge [240]. The regular graph, however,

is a particular case since it shows a plateau rather than a peak. This is due to its

wide transitional state, in which different replicas of the same setting can converge

to different conventions.

On the right part of figure 7.3 the convention A is more efficient that convention

B. Playing action A yields a payoff α = 2, when playing action B it yields a payoff

1. In this case the plateau of the regular graph do not appear because its transitional

space narrows, as it is shown in figure 7.2.c. Thus, we see only the peaks in rB where

the transition phase takes place (r∗B = {.6, .85, .90}) of scale-free, small world, and

regular graphs respectively, which correspond to the transition phases observed in

figure 7.2.c.

Again, we observe that the convergence is more inefficient in time when the initial

rB is close to r∗B . It is important to remark that the regular graph has improved

its efficiency in reaching the convention, that is, it is more efficient than the small

world graph when α = 2. As was shown by Peyton Young [241], convergence to a
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risk-dominant equilibrium, which in our case corresponds to the Pareto-efficient one,

is surprisingly rapid provided a close-knit (clustered) graph. The scale-free graph is

always the most efficient graph in terms of convergence no matter what α. However,

as we have discussed in section 7.4, scale-free graphs do not allow convergence to the

efficient convention unless the initial number of agents playing A is very big, 40%,

compared to the 15% needed with a small world graph, with α set to 2.

7.5 Analytical Model

In order to provide some analytical evidence about the critical points we will try to

reduce our initial model to a more suitable one for analysis.

First of all, we replace the role of past interactions stored in agent i’s memory

(Mi) by the current state of agent i’s neighbors. Notice that in our model we set

the memory size to the average connectivity, M = 〈k〉. Instead of applying the

HCR-rule over Mi we will transform it as follows. Let us take kS as the number

of neighbors in the same state as agent i, and kS the number of neighbors in the

opposite state. Therefore, the update is performed if kS > φkS , where φ is the payoff

yield by the payoff matrix G when playing (S, S).

Therefore, the switch from playing A to playing B is done when kB > αkA, since

G(A,A) = α. Similarly, the switch from playing B to play A is done when kA > kB ,

since G(B,B) = 1.

The probability of updating the state is defined by equation 7.5.1. We decided

to introduce some stochasticity in order to compensate for the fact that, now, the

update is calculated by the current state of the neighbors and not by the interactions,

as the HCR-rule did.

fβ,φ(kS) =
1

1 + e
β(φ−(φ+1)

k
S

kS+k
S

)
(7.5.1)

We will use what in physics is called a mean-field argument [185]. Let NB(t) be

the number of agents playing action B at time t, and ρ(t) = NB(t)
N be the density of

agents playing B. A first approach is to assume the following homogeneity condition:

for every agent with k neighbors, the number of neighbors in state B is kB(t) ' kρ(t).

This condition is completely fulfilled by random graphs, and approximately fulfilled

by scale-free and small world graphs (when p → 1).

Nevertheless, this homogeneity condition is not fulfilled by regular and by small

world graphs for low values of p. What breaks the homogeneity is the clustering

coefficient. For low-clustered graphs this condition holds since the global density of

agents in state S corresponds to the proportion of neighbors in state S. Intuitively,

the clustering coefficient can be defined as the probability that a node i and a node
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j have a link provided that node l has a link to both i and j. Thus, when clustering

tends to 0 the node’s neighborhood is a good sample of the graph. However, when

the clustering coefficient is high the node’s neighborhood is not a sample of the

graph, since its neighbors form a clique, a close-knit group.

Therefore, we propose a new homogeneity condition that takes clustering (cc)

into account. Let us define cc as the clustering coefficient, provided that cc is the

probability of agent l’s neighbors being also neighbors, (1 − cc)k is the number of

neighbors which are not in the l’s clique, and to whom the previous homogeneity

condition holds. Therefore, for an agent playing A with k neighbors, the number

of neighbors in the opposite state (B) is kA ' (1 − cc)kρ(t), which is the cc-biased-

homogeneity condition.

Now we can write an equation for the evolution of ρ(t). First, notice that the

variation of ρ(t) after a small time interval ∆t is proportional to ∆t, that is

ρ(t + ∆t) = ρ(t) +
∂ρ(t)

∂t
∆t + O(∆t2) (7.5.2)

Then, we can neglect the O(∆t2) term (since we perform a continuum approx-

imation ∆t → 0) and compute the variation of ρ(t) as the balance between the

agents switching from action A to B and the agents switching from action B to A.

On one hand, the fraction of agents in A (that is, 1−ρ(t)) that change to state B in

a time interval ∆t is the product (1 − ρ(t))f(ρ(t))∆t, provided ∆t is small enough;

on the other hand, the fraction of agents that switch from action B to A in ∆t is

ρ(t)f(1 − ρ(t))∆t, also for small ∆t. Thus after ∆t → 0, the mean-field equation for

ρ(t) can be written as

∂ρ(t)

∂t
= (1 − ρ(t))f(ρ(t)) − ρ(t)f(1 − ρ(t)) (7.5.3)

After substitution of fβ,φ to which the cc-biased-homogeneity condition has been

applied. Setting β = 〈k〉 and φ = (S, S) the equation reads

∂ρ

∂t
=

1 − ρ

1 + e〈k〉(α−(α+1)(1−cc)ρ)
−

ρ

1 + e〈k〉(1−2(1−cc)(1−ρ))
(7.5.4)

We want to study the stable fixed points of 7.5.4 since these will give us informa-

tion about the final state of the system. Thus we must find the solutions of ∂ρ
∂t = 0.

As we can see in figure 7.4, stable fixed points are ρ∗ ∼ 0, and ρ∗ ∼ 1 (these have

been computed numerically) and the unstable fixed-point lies in the interval (0, 1).

In table 7.2 we display the unstable fixed points of the density equation, which are

possible critical points of the HCR model provided that our assumptions are correct

(see above). Furthermore, in table 7.2 we find a comparison between the analytical

unstable fixed points and those critical points coming out from the simulation of the

HCR model. Notice that the plausibility of the simplifying assumptions behind our
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ρ∗(r∗B) α = 1 α = 3
2 α = 2

cc=0.666 0.5 (0.5) 0.831 (0.90) 6 ∃ (0.95)

cc=0.492 0.5 (0.5) 0.68 (0.7) 0.827 (0.85)

cc=0.0433 0.5 (0.5) 0.566 (0.55) 0.614 (0.60)

cc=0.0081 0.5 (0.5) 0.560 (0.55) 0.607 (0.60)

Table 7.2: Fixed points ρ∗ of the analytical model. The table shows the critical

point for which ∂ρ
∂t = 0. In brackets the critical points observed experimentally with

the HCR model (r∗B) (figure 7.2). The parameters used to model the graph are the

clustering coefficient cc, and the average connectivity 〈k〉 set to 10.

analytical model is supported by the agreement between analytical and experimental

results (remind that rB was sampled with a resolution of .05).

Figure 7.4 shows the variation in ρ, ∂ρ
∂t , for different α and cc. We can see the

effect of α enlarging the basin of attraction of convention A. On the other hand cc

has the effect of reducing the amount of variation due to the effects of the cc-biased-

homogeneity condition. Consequently, the time elapsed to reach a convention will be

longer, and fluctuations in initial conditions will have a bigger impact. As a matter of

fact, the experimental results on the HCR model show that these two consequences

apply for highly-clustered graphs such as regular graphs. The convergence time is

much higher compared to non-clustered graphs. And the transitional space, where

the system can converge either to B or to A for the same initial parameters, is wider.

7.6 The Role of Imitation

In this section we will modify the model based of the HCR-rule introducing an

imitation propensity iS , which is the probability that, after a dyadic interaction

where at least one agent that was playing action S, both agents end up playing

action B regardless of the HCR action updating rule. By introducing an imitation

propensity we model the effect of having an attractive action which is more likely to

be chosen.

Imitation is considered as the key factor of the adoption of norms, and by ex-

tension, conventions. How does the existence of an attractive action affect the final

convention reached by the agents? And what if the attractive action happens to be

sub-optimal? In our model coordination on action A is the most efficient solution (if

α > 1). However, action B (if iB > 0) might become a better replicator since it can

be adopted by imitation as well as adopted by the learning process (HCR-rule).

The effect of iB heavily depends on the clustering coefficient of the underlying

topology. For instance, when α = 2 and iB = 0.4 the clustered communities adopt
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Figure 7.4: Study of the fixed points of the density equation 7.5.4. ρ is the density

of agents playing B. The clustering coefficient is set to cc = {1E − 05, 0.1, 0.5}. α

is set to {1, 2}

the attractive convention (B) over the efficient one (A) regardless of the initial den-

sity (rB), while non-clustered communities will still adopt A provided rB < 0.25.

Therefore, it might be derived that non-clustered communities are more resilient

against attractive conventions in favor of efficient conventions. This result would

seem to contradict the previous claim, that clustered communities are better off

in converging to the efficient convention. However, when iB is small enough, for

example when iB = 0.1 the opposite effect is observed, clustered communities keep

on converging to the efficient convention regardless of the initial density of agents.

This two-fold behavior is perfectly clear in the case of regular graphs (left column of

figure 7.5). There is a threshold, i∗B , under which the system ends up in the efficient

convention, and over which the system ends up in the attractive convention. For

example i∗B = 0.2 when α = 2 and the underlying topology is the regular graph.

Notice, that this threshold is not found in the case of the small world graph whose

clustering coefficient is high, although not so high as the case of the regular graph.

However, even without the threshold we observe a similar behaviour as in the regular

graph although it appears more progressively.

If we compare it against the behavior of low-clustered graphs, we find again that

the system is more resilient to the attractive action invasion for low values of iB .

For high values the contrary happens: the system is very receptive to an invasion

of agents playing the attractive action. We must state the fact that the model is

interesting for small values of iB . For high values of iB , the dilemma of the agent that
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Figure 7.5: Effect of imitation propensity (iB) on the ratio of conventions on action

B. iB ranges from [0.0 0.975] with a .0275 resolution. rB ranges from [0.05 0.95]

with a 0.05 resolution. The sub-figures within the figures are for the sake of clarity:

setting the parameter iB we observe the evolution of B-conventions depending on

rB , which correspond to the way the previous results were shown (when iB = 0).

has to choose between the efficient or the attractive action dissapear and becomes

an epidemic spread model [185].

7.7 Discussion

The research presented in this chapter aimed to identify under which conditions an

efficient convention is established in a networked community. We have shown that

the key factor is the clustering of the underlying social network.

When communities are highly-clustered the system converges to the Pareto-

efficient action even though the initial population choosing that action was clearly a

minority. This suggests that the efficient convention is a stable convention because it

cannot be invaded by a set of agents playing another sub-optimal action. However,
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a sub-optimal convention can be replaced by a set of agent playing an action that

yields a better payoff. Accordingly, when the clustering coefficient is high the system

always converges to the most efficient convention and this convention is stable. On

the other hand when clustering tends to zero the adopted convention depends solely

on the density of agents following an action. If the majority of agents play the sub-

optimal action the inefficient convention will be established, and it will be stable.

To back up our findings, we provided an analytical approximation that reproduces

the results observed in our model based on the HCR-rule. To do so, we had to

introduce a new homogeneity condition which let us work in clustered graphs, where

the classical mean-field homogeneity condition is not met.

In accordance with the strong functionalism thesis from classical sociology, we

have found that in certain graphs the agent system was capable to find and maintain

the optimum in the stable state. However, this only applies to highly-clustered

communities, which resemble many empirical social networks. At the same time,

our model also corresponds in two respects to the view that rational choice theorists

in sociology take on social norms. First, we have shown that global efficiency arises

from individual goal oriented actions. Second, we have found that under certain

conditions optimizing individual actions fail to generate socially efficient outcomes,

a problem that is central to the contemporary discussion about the emergence of

conventions and norms.

To conclude, our results seem to correspond more with a rational choice on norms

than with the strong functionalism thesis. We have shown that socially optimal

conventions can arise from individual optimization, but there is no guarantee that

this happens. In this sense, our model matches well the ample evidence of examples

of suboptimal conventions, for example in market processes. We believe that a

part of the explanation for this may lie in the competition between optimization

and imitation that we have addressed in our model. We have shown that imitation

processes make it possible for a sub-optimal yet attractive action to overthrow the

efficient action, and become stable, provided that its attractiveness is high enough

to be worthy of imitation.



Part IV

Dynamics of Structure
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Chapter 8

Complex Networks through

Local Optimization

Throughout this thesis, structure has been presented both as a source of information

about the system and as a major force driving the dynamics of the system. We feel

we have give enough evidence to support our main claim, i.e., that structure matters.

Besides that, we have also shown that certain patterns of interactions facilitate the

rapid emergence of efficient social conventions without relying on centralization or

planning of any sort. Furthermore, these convenient patterns of interactions arise

in empirical networks that model real complex systems (see section 3.2). Therefore,

in order to further explore the role of structure in artificial societies an important

question remains to be addressed: which are the processes leading to the formation

of such particular network structures?

In this part of the thesis we address the dynamics of structure by presenting a

model based on local optimization of a social exchange process. The model presented

in this chapter, as opposed to many other models of complex networks reviewed in

section 3.2.1, is completely grounded in plausible assumptions, such as the use of

local and imperfect information by the agents. Hence, autonomous agents, pursuing

the selfish goal of finding the best set of partners to interact with, can organize

themselves and exhibit a wide range of structures, including complex networks.

8.1 Macrostructures and Microprocesses

As we argued in section 3.2.1 and will continue in this section, previous modeling

work has mainly relied on rather mechanistic and sociologically implausible assump-

tions about the processes that may generate complex networks.

Accordingly, it remains an open question from the point of view of social sci-

ences whether and if so how complex networks can arise from the behavior of real
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social agents. This question, however, is not limited to the scope of social sciences.

Throughout the first part of this thesis we have exposed why we believe that multi-

agent systems and other artificial societies should emphazise their social dimension.

Thus, a better understanding of the social processes occurring in nature can directly

benefit the design and operation of artificial societies.

If complex networks can plausibly be the product of social interactions, then

their impressive efficiency and robustness may help to better answer some crucial

questions in the social sciences, and by extension in what we could naively call

artificial social sciences.

For example, how is trust possible between strangers? [239, 157]. Some re-

searchers have argued that the efficient diffusion of reputational information through

networks may be a decisive mechanism for the emergence and stabilization of trust

[191, 42]. Or why can some groups quickly and effectively organize collective ac-

tions, such as strikes or demonstrations, while others fail to do so? This has likewise

been related to network structures that are efficient for information transfer and

recruitment processes between group members [160, 104, 105].

But why and under what conditions can societies or groups develop in the first

place the networks they need to sustain trust and facilitate collective action? We

believe that this question can not be answered in a satisfactory manner as long as our

models of network formation rely on behavioral assumptions that are implausible as

models of human social agency.

The invariants (small world, power law, etc.) found in many empirically studied

social networks suggest that humans tend to organize themselves in a very partic-

ular way at the macroscopic level. Physicists have provided many models that can

reproduce with high accuracy these empirical data. Nevertheless those models are

based on assumptions either unrealistic from the sociological point of view (global

knowledge), or they consider the agent as a mindless actor in the game. Is the

emergence of structure in human societies sufficiently explained by a model of dum-

mies interacting with other dummies? Or can this emergence be better explained

as the consequence of a plausible sociological microprocesses? We believe that so-

ciologically plausible microassumptions will not only allow to reproduce the results

of previous models, but they will also help to identify new sociologically meaningful

hypothesis about the conditions and patterns of complex social networks.

Physicists’ models of the emergence of complex networks have mainly been for-

mulated in the tradition of network theories informed by graph theoretic concepts.

This work reflects the predominant structuralist perspective in social network re-

search in mainly focusing on the effects of structure on individuals and largely leav-

ing implicit the individual actions that bring structures about. In our research, we

take a radically different view and emphasize individual agency as the driving force

of network formation. Accordingly, we use in the following the term agent to refer



8.1. MACROSTRUCTURES AND MICROPROCESSES 111

to the individual actors in social network, in contrast to graph theoretic approaches

who often refer to individuals as nodes in a graph. Our actors are agents in the sense

of agent-based modeling. In this view, an agent has four defining characteristics:

autonomy, reactivity, proactivity and social ability [236, 100]. Autonomous agents

have control over their own goals, behaviors, and internal states. Reactive agents

perceive and react to their environment. Proactivity refers to an agent’s ability to

take initiative to change aspects of their environment in order to attain individ-

ual goals. Finally, social ability refers to the capacity to influence other agents in

response to the influences received.

8.1.1 Previous Models

The two most prominent models of the individual level mechanisms that have been

proposed to underlie the emergence of complex networks are the mechanisms of

stochastic rewiring, described in the seminal work by Watts and Strogatz [232], and

the mechanism of preferential attachment and uniform growth, proposed by Barabási

and Albert [22]. This work has inspired a range of subsequent models, particularly of

the emergence of power-law networks. Let us suggest to the reader to revise section

3.2.1 for a more comprehensive review of models of complex network formation.

Stochastic Rewiring

The model of stochastic rewiring has been designed to show how relatively few

random changes in a network can transform an initially fully locally clustered net-

work with large (or even infinite, cf. [228]) average path-length, into a small world

structure that is still locally clustered, yet characterized by short average distances

between the nodes. Local clustering refers here to a large degree of overlap be-

tween the ego-networks of adjacent nodes, as in small villages where residents are

mainly connected to other residents and have few external contacts. Watts and

Strogatz [232] showed that a small probability of rewiring a randomly selected tie

to some randomly selected new target in the network is sufficient to bring about a

radical change in the global features of the network, from a pattern with low speed

of information propagation to a structure that is highly efficient for information

diffusion through network ties. The main reason is that a single rewired tie does

not change fundamentally the local structures of ego-networks, but it is sufficient

to bridge the distance between two otherwise distant, or even disconnected, local

units. Later elaborations proposed social processes such as geographical migration

within or between countries as examples of this mechanism [228]. While the work

by Watts and others was extremely important to demonstrate how efficient network

structures may emerge from simple local processes, the authors have paid little at-

tention to the question why and under what conditions the mechanism of stochastic
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random rewiring may be a plausible result of social behavior, i.e. of the individual

motives and cognitions that lead social actors to make or break relationships. It is,

for example, questionable whether geographical migration may produce stochastic

random rewiring. Geographical migration is often characterized by locally corre-

lated patterns of behavior, where the experience that one pioneer migrant makes at

his new residence is communicated back to old acquaintances, potentially trigger-

ing a new wave of migration to the same location. By contrast, random migration

would spread new ties across the entire population, presumably with very different

consequences for the network structures that may evolve. Accordingly, we believe

that the conditions under which small world structures may plausibly arise in so-

cial networks can be better identified when network changes are explicitly derived

from sociologically plausible assumptions about the individual goals and behavioral

heuristics that underlie network changes at the microlevel.

Preferential Attachment

The model of preferential attachment also leaves the individual level decision process

widely implicit. Barabási and Albert [22] developed their model to explain how in

a growing network, like the network of page references in the world wide web, a

power-law degree distribution emerges, where, broadly, the number of nodes that

have a particular degree decreases with the degree to the power of some constant.

The mechanism of preferential attachment assumes that new actors who enter the

network prefer to relate to those existing nodes that already have a high degree. A

plausible reason for preferential attachment, which generalizes beyond the example

of the Internet, may be that actors strive for social status. New actors entering

a group may expect that they maximize their own social status by relating to the

most popular peers, generating preferential attachment. While the mechanism of

preferential attachment may seem better motivated by social structures than random

rewiring, it relies on two assumptions that seem implausible for a large range of social

networks. First, the assumption that actors have public and full access to reliable

knowledge about the structure of the whole network, in particular the in-degree of

any other member of the network. Second, the assumption that actors are cognitively

capable to process this information accurately. These assumptions are required to

obtain a parametric and analytical solution that can reproduce some empirically

observed networks. However, we argue that due to the behavioral implausibility

of the micro-mechanism, the model of preferential attachment reproduces rather

than explains complex network structures. This criticism extends to recent more

sophisticated models of preferential attachment, like the one proposed by Walsh

[224]. In this model, a new node that is added to the network is attached to a

node in the existent network following a probability distribution that depends on
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the degree of the nodes present in the network. While this model is very successful in

generating graphs with the power-law property, it also assumes that agents know the

complete distribution of degrees of the graph and process this information accurately

when choosing to whom they want to relate.

Behavioural Models

Several researchers have addressed the issue of behavioral models underlying com-

plex network dynamics. Transitive linking was in particular proposed by Krapivsky

and Redner [142] and by Ebel et al. [76] as a mechanism where agents use solely

information about their local ties. In a nutshell, transitive linking assumes that new

ties are most likely formed between actors who have a common acquaintance in the

network. This work could show that preferential attachment behavior may arise from

the transitive linking process, even when individual actors have no global knowledge

about the network. However, like the original preferential attachment model, transi-

tive linking does not make the underlying social mechanism explicit. While transitive

linking may be a plausible description for realms such as co-authorship networks, it

seems, for example, less straightforward for the dynamics of help or advice exchange.

Why and under what conditions should two actors who have exchanged professional

advice with the same third party, become more likely to help or advice each other?

While their common acquaintance may have needed advice of both of them, the

advise givers may not necessarily need each others’ help. Clearly, the decision to

enter an exchange relationship depends not only on having common acquaintances,

but also on the proper match of demand and supply in exchange relations.

Recently, social network researchers increasingly call for sociologically more plau-

sible models of complex network emergence. For example, Robins et al. [193] made

important progress by showing how computational methods allow to simulate dis-

tributions of Markov Random Graphs including small word structures, based on

assumptions about simple and strictly local processes. Their approach specifies lo-

cal dynamics in terms of statistical interdependencies between ties in the network

neighborhood of a node. While this work mainly aims at testing whether a given

model of a local process can explain observed complex network structures, it does not

explicitly address individual motivations or cognitions underlying local dynamics.

Optimization Processes

To derive the emergence of complex networks from more fundamental principles of

individual behavior, a model of some optimization process is presented in which ac-

tors make or break ties to attain specified individual goals, while agents are at the

same time restricted by their current position in the network. With the approach

of highly optimized tolerance (HOT), Carlson and Doyle [47] proposed system op-
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timization as explanation of the emergence of complex system structures including

complex networks. This work shows that in general power-law distributions of cer-

tain individual features may emerge when a system is optimized by a selection

process resembling survival of the fittest. HOT models can be extended to network

design, for example with the goal to make the network both efficient for information

distribution and robust against randomly distributed risks of the destruction of sin-

gle nodes. However, we argue that the HOT approach is problematic as basis for a

model of the emergence of unplanned social networks, because the locus of decision

making in this model is not the individual agent, but a central network optimizer.

Ferrer and Solé [83] move a step further and explain complex network emergence

from individual optimization. In their approach individuals aim to optimize global

structural measures of the network, such as density and average path length. Their

model may be adequate to describe a situation in which individuals’ interests per-

fectly coincide with collective goals of, e.g., a social group or organization to which

actors belong. But Ferrer and Solé neglect the partial conflict between common

goals and individuals’ interests that characterizes network formation in a range of

areas, such as inter-firm technological cooperation [188] or social support exchange

[84]. In these realms, network formation is at least partly driven by competition

between agents for relationships with attractive exchange partners, while at the

same time agents are restricted in the time and effort they can invest in network

contacts. For example, Bonacich [32] shows that in a research team, a communica-

tion dilemma may arise, when status gains or bonus payments reward exceptional

individual performance, while at the same time the team as a whole may compete

against other teams. The team as a whole may benefit when all members aim to

maximize the global efficiency of information exchange networks between them. At

the same time, individual team members face incentives to withhold information

and collude instead in dyadic exchanges or within small cliques to outperform their

colleagues. Clearly, a model which assumes that agents optimize on global network

properties is a misleading template for this type of situations where network change

faces agents with a social dilemma [62].

To sum up, we argue that a sociologically plausible model of the emergence of

complex exchange networks should have the following features. First, the locus of

decision making about network changes is at the level of individual actors. Second,

individual actors make or break ties to optimize their individual goals based on

bounded rational individual decision heuristics. Third, individual agents use for

this optimization only local and imperfect knowledge of network characteristics.

Finally, common goals and individual interests are with respect to desirable network

characteristics at least partly in conflict with each other, i.e. network members face

a social dilemma situation.

In the following, we propose a model that has the features listed above. We will
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show that our approach is not incompatible with the classical preferential attachment

model, but can generate preferential attachment behavior under certain conditions.

However, relational change is in our model just a consequence of optimization at the

agent level. An example for this could be the emergence of scientific collaboration

networks, where scientists do not choose their co-authors based on their connect-

edness in the network, but in terms of whom they perceive as the best partner to

conduct research with. In this example, preferential attachment is not the under-

lying and driving mechanism, but it may be a consequence of the underlying local

optimization process. The empirical study presented in section 4.3 that compared

the network of website references in a scientific community to scientists’ publication

scores suggests this possibility. The experiments show a substantive correlation be-

tween journal publication scores and scientists’ centrality in the network of website

references.

8.2 Local Optimization in Social Exchange Networks

Our model is based on social exchange theory and assumptions of bounded ratio-

nality [29, 118]. As baseline, we take a model of the dynamics of social exchange

networks that was originally proposed by Flache and Hegselmann [114, 84, 85, 86].

Their model assumes that agents seek to find and keep attractive exchange partners

in a population where agents are to some degree free to exit from ongoing exchange

relations, differ in attractiveness as exchange partners, for example due to variation

in the amount of material resources at their disposal, and have only limited access to

and information about potential new partners. These assumptions reflect empirical

results on social exchange, which show for example that in relations of gift exchanges,

actors select exchange partners partly on basis of the amount of resources they may

expect to attain in the exchange [141]. Similarly, in certain industries, technology

cooperations between firms constitute network patterns in which firms seek to es-

tablish relationships with partners both based on technological attractiveness and

status in the industry of potential partners, as Podolny and Page [188] suggest. Fi-

nally, in networks of advice exchange, actors often differ in their degree of expertise

and thus attractiveness as advice givers. For consistence of our terminology, we will

use in the remainder advice or support to refer to the exchange commodity, but we

wish to point out that the scope of our analysis generalizes to most forms of social

or professional help exchange and collaboration networks.

To model individual goals, we assume that agents gain from being supported but

incur some loss if they provide support themselves. More precisely, the larger the

amount of help an agent receives, the larger his gain is. Conversely, the more help an

agent provides, the larger his loss. This implies in particular that agents try to avoid

exchange with partners who are either not capable or not willing to give good advice.
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We assume that agents aim to optimize their exchanges in terms of these goals under

imperfect, local information without initial knowledge about others’ characteristics

or knowledge about the global network structure. Moreover, agents in our model

are strongly adaptive, i.e. they acquire knowledge only in the course of interaction

and apply simple search heuristics to select potential new partners. As we will show,

these assumptions do not preclude the emergence of complex networks.

8.2.1 Memory and Interaction

The network consists of a population of N agents. Each agent i is characterized

by his individual attractiveness for other agents, αi, representing for example his

expertise, material wealth or beauty (0 < αi < 1). However, before interaction, every

agent is ignorant not only of others’ attractiveness but also of its own. This expresses

that people learn their market value only through interaction with exchange partners.

For simplicity, we assume that attractiveness is initially distributed uniformly and

remains constant throughout the simulation. However agents’ perception of their

own and others’ attractiveness changes through interaction.

The second attribute in which individual agents differ from each other is their

memory, representing the knowledge they acquired in previous interactions. More

specifically, at any point in time the memory of agent i contains for a number of

other agents j the recollection i has of the payoff oij that he attained in previous in-

teractions with j. To express bounded rationality, we assume that agents remember

only a small subset of all system members. Formally, memory is represented as

M t
i = {(oij , tij)}j∈Jt

i
,

where tij represents the time point at which the memorized interaction took place

and J t
i represents the subset of all agents that i memorizes, J t

i ⊆ {1..N}. One time

step corresponds to an interaction round in which all the agents are activated once

in random order to make decisions (asynchronous random activation). The subset

of network members which an agent can remember is limited in size by a maximum

memory size MC , i.e. #J t
i ≤ Mc ∀t∀i. We model the maximum memory size MC

as a parameter that is equal for all agents, because we are mainly interested in

effects of structural conditions that shape individuals’ learning capacities through

their ability to store information. Such a condition is for example the capacity of

the information storage technology that is available in a society [159]. Obviously,

agents have in our model only access to a partial view of the network, and their

knowledge remains local, i.e. it depends exclusively on the individual experiences of

agents.

To model the process through which agents gradually get to know other network

members, we assume that the agents represented in the memory of an individual i

fall apart into two distinct subsets, the known agents K t
i , and the unknown agents
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U t
i . An agent j is unknown to i when i does not know the characteristics of j but

is at least aware of j’s existence. Agents of whose existence i is not aware are not

represented at all in i’s memory. The total set of all network members of whose

existence i is aware is denoted J t
i , where J t

i = U t
i ∪ Kt

i and U t
i ∩ Kt

i = ∅. To have a

well-defined baseline situation, we assume that at the beginning of the simulation no

one is known to anybody else, but each agent has a number of Mo randomly chosen

network members he is aware of, but who are classified as unknown. Only in the

course of the simulation, i will learn about the existence of more agents and they

may even become known for i through interaction. Accordingly, the recollection

(oij , tij) of the payoff that i received after interaction with j at time point t is only

defined in i’s memory when j is known, i.e. j ∈ K t
i . Both the memory as a whole

and its partition into subsets of known and unknown agents may change over time,

but it remains always bounded by the maximum memory capacity Mc.

In the interaction process, the agents are activated in random sequence. Once

activated, an agent tries to establish Q interactions with agents contained in his

memory. Following previous models of complex network dynamics, for example

[22, 228, 224], we assume that the initiation capacity Q is a system-wide parame-

ter that represents universal technological or social constraints (i.e. communication

technology or politeness norms) on the number of interactions an agent can initiate

simultaneously. This parameter implements one aspect of the harshness of the ex-

change situation actors face. The smaller the initiation-capacity relative to the total

number of exchanges in which an agent can be involved, the harder it is to find a

sufficient number of attractive partners.

The agent selects the targets of his interaction initiations to optimize the out-

comes he expects to attain from the interaction. To reflect bounded rationality, we

assume that decision making about action initiation is entirely adaptive or backward-

looking, as done by Macy and Flache [156]. That is, agents derive their expectations

solely from the experience represented in their memory. Details of the optimization

procedure will be explained below, when we turn to individual decision heuristics.

Interactions are dyadic and both agents need to agree before an interaction ac-

tually happens. Correspondingly, agents also face a limitation of the number of

interactions they can be simultaneously involved in. We call this limitation their

interaction-capacity (C). More specifically, the interaction-capacity C restricts the

maximum number of interactions per agent per time unit. Agent’s interaction-

capacity must be equal or smaller than their memory-capacity, C ≤ Mc. We intro-

duce the interaction-capacity parameter because in many social network dynamics

actors have limited resources to build up and maintain social ties, particularly when

an interaction implies a certain work load or time investment. Notice that most

previous models in the literature on complex networks take it for granted that ac-

tors have a potentially unlimited capacity to entertain simultaneous relationships.
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This applies in particular to the model of preferential attachment. This assumption

may be applicable for situations where an interaction does not imply a work load or

time investment for both parties, such as deployment of a link from one web page

to another. However, we consider unlimited capacity an exception rather than the

rule in social network dynamics, where interactions usually require the allocation of

some limited resource.

8.2.2 Actions, Outcomes and Payoffs from Social Interaction

Following Flache and Hegselman [85, 86], we model the actual exchange between

agents as a support game. For simplicity, both actors have only two decision op-

tions in the constituent (one-shot) game, to provide advice (Cooperate), and to not

provide advice (Defect). To further simplify, we assume that the interacting agents

make these decisions simultaneously and independently. Accordingly, the outcomes

of one interaction between two agents i and j can be DD, mutual defection, uni-

lateral support of i by j or vice versa, DC or CD, or mutual cooperation, CC. The

effects of outcomes on agents’ goal attainment depend on the attractiveness levels

of both participants. The larger the attractiveness of the focal agent, αi, and the

smaller the attractiveness of his interaction partner, αj , the more advice i will give

(and j receive), if i decides to actually cooperate with j (C).This expresses that in

advice exchange a recipient may maximize his profit by getting advice from a very

knowledgeable person, say a guru, while the guru may receive little new knowledge

from an average advice seeker.

Technically, we assume that i’s cooperation benefits the recipient with αi(1 −

αj) units of advice. However, when the focal actor fails to support his interaction

partner, he provides zero units of advice. Conversely, i receives (and j gives) (1 −

αi)αj units if j decides to support i (C). At the same time, i receives no advice,

when j declines to give support (D).

The payoffs that accrue to both actors from the exchange, pij and pji, follow

from the balance of their respective costs and benefits. To model payoffs, mutual

defection, DD, is used as the baseline outcome that yields a payoff of zero to both

participants. In the outcome DD, actors neither receive advice nor provide it. Tech-

nically, we model i’s gain from receiving advice from j, Gij and i’s loss as a result

of giving advice to j, Lij , as follows:

Gij = (1 − αi)αjB (8.2.1)

Lij = αi(1 − αj)E (8.2.2)

The parameters B and E are positive constants that weigh the benefit, B, of

receiving one unit of advice against the effort costs, E, of providing the unit. It is a
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central assumption in our analysis that self-interested individuals may in principle

benefit from advice exchange. To ensure this, we assume that the benefits of receiv-

ing a unit of advice exceed the costs of producing it. The cost to benefit ratio, E
B ,

parameterizes a further aspect of the harshness of the exchange situation actors face.

The higher this ratio, the more severe the loss agents incur if they are unilaterally

exploited compared to the potential benefits of mutual cooperation. In technology

cooperations, harshness may vary, for example, between sectors with different firm

sizes, where in sectors with small firms, agents are more vulnerable to financial losses

caused by others’ defection than in sectors with large firms. Similarly, in academic

environments with high emphasis on competition and individual publication scores,

advice giving or collaboration are potentially more risky and costly than in more

collaborative environments.

Figure 8.1 illustrates the incentive structure that ensues for the constituent sup-

port game. The first entry in a cell refers to the payoff of the row player i, the

second entry indicates the payoff of the column player j. Notice that the game

is not necessarily symmetrical. Players obtain different outcomes in symmetrical

choice combinations, unless they are equally attractive.

Agent i

Agent j

C D

C (Gij − Lij , Gji − Lji) (−Lij, Gji)

D (Gij , −Lji) (0, 0)

Figure 8.1: Payoff Matrix of the Support Exchange Game

Figure 8.1 shows that the support game may be a true social dilemma where

cooperation conflicts with self-interest. There is nothing that guarantees reciproca-

tion within one iteration. Particularly when players expect a short-term relationship

and conditions are harsh, they may be tempted to withhold support. Exploiting a

partner who provides advice is in the short run the most profitable outcome for

a selfish agent and to be exploited by a partner who fails to give advice is least

attractive, regardless how attractive the players are. Clearly, these incentives may

face self-interested actors with a particularly difficult social dilemma, the Prisoner’s

Dilemma (PD). At the same time, the game is not necessarily a PD. In a PD, both

players prefer mutual cooperation (CC) to mutual defection (DD) despite incentives

to defect unilaterally. In our support game, it is possible that only the less attractive

player may be interested in mutual support. More precisely, when the focal player is

not attractive enough in comparison with his counterpart, then it may be impossible

for the focal player to receive enough advice to be compensated for the investment in

supporting his partner (Gij < Lij). To be precise, the support game is a Prisoner’s

Dilemma if and only if for both players it holds that (1 − αi)αjB > αi(1 − αj)E.
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Notice that our model also implies that the capability to provide advice and

the need for advice are inversely related. The more advice an agent needs in a

certain period of time, the less he can give to others in the same period. We feel

that this assumption is plausible for many social exchange relations. For example,

consider the effects of variation in expertise on the individual neediness for advice in

an academic community. Expert members may both have more knowledge to share

with others and less need for advice themselves, as compared to less knowledgeable

members. For another example, in a rural village only some farmers may be wealthy

enough to afford expensive farming machinery. These farmers do not need to borrow

others’ machines, but they might lend their machinery to less wealthy farmers.

To model local and imperfect knowledge of agents, we assume that B and E, as

well as the attractiveness levels are not explicitly known. That is: agents pursue their

goals facing a high degree of uncertainty. We explain in the next subsection which

knowledge agents actually do have once they decided to enter into an interaction.

8.2.3 Agent’s Decision Heuristics

When an agent i is activated, he first selects another agent k to propose an interac-

tion in the current simulation round t.

Following recent models of socially rational decision heuristics, such as the pro-

posed by Lindenberg in [152], we assume that agents both seek to optimize their

expected returns and tend to search for improvement through new, untried courses

of action. Technically, this is modeled with an exploration probability et
i with which

an agent within i’s current memory J t
i is chosen randomly. When the focal agent

optimizes rather than explores, the interaction partner with the best expected payoff

is chosen from the memory of known others, K t
i . If there is more than one known

agent with the same maximum expected payoff, one of the optimal agents is chosen

at random.

Initially, agents select interaction targets at random, i.e. the exploration prob-

ability is 1. We assume that the tendency to explore declines as agents get to

know more other network members. This implies that over time the exploration

probability differs between agents. In particular, popular agents quickly decrease

their exploration probability because they receive many interaction proposals, and,

accordingly, learn faster about their environment than agents who receive less inter-

action proposals. Technically, we model the exploration probability at time point t

as the ratio of the number of unknown agents in i’s memory to the square of the

number of all agents i is aware of at that point in time.

et
i =

(

#U t
i

#J t
i

)2

(8.2.3)
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After an interaction has been initiated, the targeted agent j needs to decide

whether to accept the proposal of the initiator i. We assume that j will only accept

the interaction if j has not reached its interaction-capacity C of concurrent interac-

tions and j is aware of i’s existence. If, furthermore, the initiator is not known to

j, then the proposal will be accepted. If the initiator i is known to j, then j will

accept the proposal if and only if he expects the outcome to be not negative.

If the interaction proposal is accepted, agents i and j play one round of the

support game. For simplicity, we exclude in the present version of our model strategic

free riding and assume instead that agents are benevolent. We plan to take into

account strategically opportunistic behavior in future work. For the time being, our

assumption implies that an agent is cooperative, but not altruistic. To be precise,

i cooperates with j if and only if the expected net benefit from i’s point of view

is positive, (Gij − Lij) ≥ 0. In particular, when an agent has no prior experience

with his counterpart, he can reliably assess the expected net-benefit from mutual

cooperation. This assumption reflects that usually in social exchange agents will

learn about each others’ characteristics after a mutual decision to interact with

each other and before they enter into the actual exchange. Accordingly, agents may

actually defect in the exchange despite their benevolence. This happens, when they

find out that their interaction partner seems to be less attractive than they may

have thought before they entered the interaction. For example, when two scientists

decide to talk some time together on a conference because they are interested in

each others’ work, one of them may find out in the course of their discussion that

the other is less knowledgeable than expected. As a consequence, he may invest

little effort in actually giving useful advice and rather utter some general and vague

comments about the colleagues’ work.

After an interaction is completed, agents update their respective memories. If

at that point in time an entry for the interaction partner does not yet exist in an

agent’s memory, then a free memory slot will be allocated for this purpose. If there

is no free slot available because the memory is full, then the agent will forget some

other previous interaction partner and replace the corresponding old memory entry

with the information about the most recent interaction. We assume that agents

are most likely to forget previous partners that were experienced as unattractive.

More technically, the agent k who will be forgotten by i is selected according to the

following rule:

k = argminn∈Jt
i
(| oin | |(tik < t)) (8.2.4)

where t represents the current point in time.

In case that i has prior experience with his most recent interaction partner, the

corresponding memory entry will be updated to average value of the most recent
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payoff and the payoff stored in the memory provided that i cooperated in its in-

teraction with j. Notice that this implies that the weight of old memories declines

after every new interaction with the same partner. Conversely, when i defects in

its interaction with j the expected outcome will be set to −pij. This reflects our

assumption that agents are not strategic. While a unilateral defection is actually a

positive outcome for the agent, the negative memory entry after a unilateral defec-

tion implies that agents do not try to exploit that partner again, but avoid instead

future interactions because they failed to establish a mutually profitable interaction

with j. Technically,

(oij , tij) =











(
oij+pij

2 , time) if, tij > 0

(pij, time) if, tij = 0

(−pij, time) if, Gij − Lij < 0

(8.2.5)

where tij refers to the current simulation time and pij denotes the payoff attained

in the most recent interaction. When an interaction proposal is rejected, the memory

is also updated according to 8.2.5, where the payoff pij, is set to zero.

How can agents ever get to know new network members, when their exploration

only is restricted to the people they are already aware of? In previous work on

the diffusion of reputations in social networks two different mechanisms are used

or sometimes combined, social learning through observation [242] or gossip [191,

42]. Gossip models assume that reputation information spreads as a byproduct of

interactions. To model gossip, we assume in our analysis that agents exchange some

knowledge from their respective memories as an act of deference or courtesy after

they have experienced a mutually profitable support interaction, that is: pij > 0

and pji > 0. More precisely, in this explicit memory exchange, the interaction

partners i and j each tell their counterpart which other agent in their current memory

has the best expected outcome. More technically, the referred agent k is found

as k = argmaxn(| oin | |(k <> j ∧ tik > 0)). To distinguish effects of explicit

knowledge exchange from those of social learning through observation, we use as

an alternative assumption implicit knowledge exchange. We assume that implicit

knowledge exchange provides less reliable information than explicit gossip. While

i can observe with whom j is currently interacting, i does in implicit knowledge

exchange not know the payoffs that j derives from this interaction. Hence, in this

mode i picks a randomly chosen agent from j’s memory with whom j is currently

interacting.

To model bounded rationality and uncertainty also in the knowledge exchange

process, we assume that the knowledge an agent acquires always reflects the sub-

jective perceptions of the sender of information, but not necessarily the interests of

the recipient. Concretely, agent i gives to agent j the expected outcome from an

interaction with a third agent k from i’s perspective, oik. Neither the recipient nor



8.3. RESULTS 123

the sender have the capability to assess which agent is most suitable from j’s point

of view. Finally, we assume that in future interactions the new knowledge acquired

is also subject to an updating process similar to the process described above, with

the one difference that the time-point tik to which the information refers in the re-

cipient’s memory is set to 0, to express that the knowledge of i about k stems from

referral or observation rather than direct experience. Technically,

(oik, tik) =

{

(
oik+ojk

2 , 0) if, tik = 0 and ∃oik

(ojk, 0) if, tik = 0
(8.2.6)

Knowledge stemming from referees or observation only applies when first-hand

knowledge is not available (denoted by tik = 0). Once direct experience knowledge

about agent k exists (tik > 0), agent i stops updating the expected outcome oik

based on third-parties experience.

8.3 Results

We are mainly interested in the effects of two key sets of conditions in our model

on the topological structure of emergent social exchange networks. The first set of

conditions refers to the harshness of the exchange game, in particular the cost to

benefit ratio in exchanges and the difficulty to access exchange partners. The other

conditions pertain to the learning capability of the agents, notably their memory

size, exploration probability and knowledge exchange mechanism. Due to limitations

of space, we can not fully explore all corresponding parameters in the present paper.

We present in the following results from experiments that manipulated the ratio of

costs to benefit in exchanges E
B to vary the harshness of game. Furthermore, we

varied the type of memory exchange (henceforth ME) to study effects of learning

capability. To explore robustness, we also varied population size, N , the capacity of

agent’s memory, Mc, the interaction-capacity C and the initiation-capacity Q.

To have a well defined baseline scenario, we fix the remaining parameters of

the model to values that make the emergence of complex network possible, but not

trivial. The number of agents initially present in the memory, Mo, is 150. Finally,

the attractiveness of agents is uniformly distributed in the range between 0.05 and

0.95 with a precision of 10−3.

Our main interest is whether our local interaction model (henceforth LO-model)

can generate similar complex network structures than previously proposed mecha-

nisms that assume global knowledge or perfect maximization or both. In order to

compare our results with other models we use the original model of Barabási and

Albert [22]. This model is based on preferential attachment and uniform growth and

it is representative for the family of preferential attachment models which assume
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Network N=1000 N=5000 N=10000

l C l C l C

Random 3.27 0.0085 3.97 0.0016 4.30 0.00093

BA 2.98 0.037 3.52 0.010 3.76 0.0044

LO(E/B=0,I) 2.47 0.16 3.22 0.05 3.56 0.034

LO(E/B=0,E) 2.51 0.20 3.16 0.085 3.42 0.065

LO(E/B=3/16,I) 3.66 0.052 4.09 0.038 4.29 0.032

LO(E/B=3/16,E) 3.71 0.034 4.14 0.030 4.37 0.029

LO(E/B=8/16,I) 3.98 0.012 4.45 0.015 4.68 0.017

LO(E/B=8/16,E) 3.91 0.027 4.57 0.040 4.84 0.038

Table 8.1: General characteristics of emergent networks. LO refers to our local

optimization model. BA denotes the Barabási-Albert model. Random refers to a

random network using the Erdos-Rényi model. Initiation-capacity Q, corresponding

to half the average degree, 〈k〉
2 , is set to 5. The interaction-capacity C is set to

150. The memory capacity Mc is set to 200. The population size, N , varies across

{1000, 5000, 10000}, the cost to benefit ratio ( E
B ) varies across {0, 3

16 , 8
16}. Finally,

we vary memory exchange between explicit and implicit, indicated as {E, I}, respec-

tively. For each condition the table charts average path length l and the clustering

coefficient C of the emergent network, together with the average path length and

clustering coefficient of the random and the Barabási-Albert network.

that agents have complete and perfect knowledge about the structure of the network.

To compare structural features of networks, we use in the following always the

network structures that evolved after 100 units of time. After this number of inter-

action rounds, the dynamics of agents’ exploration probability specified in equation

8.2.3 assure that there is practically no more exploration so that the presence of an

undirected edge (i, j) indicates a stable mutual support relationship between i and j.

Exploration rates tend to zero over time, because the ratio between unknown agents

and total number of known agents in individuals’ memory decreases monotonically

due to learning through direct experience or by referral.

Table 8.1 gives an overview of the effects of a range of simultaneous manipu-

lations. We varied the population size, N , across three levels {1000, 5000, 10000}.

The cost to benefit ratio (E
B ) changes from a game that is no social dilemma at all

with zero costs of effort, to a mild social dilemma where the ratio is 3
16 to a fairly

harsh game in which the costs are half the benefit, i.e. 8
16 . Moreover, the table illus-

trates effects of variation between explicit and implicit memory exchange, indicated

as {E, I}, respectively. Table 8.1 shows for every condition two main characteristics

of the simulated networks, their average path length l and their clustering coefficient
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C. These are compared in table 8.1 to the corresponding characteristics of random

networks of equal size, lrand and Crand and equal average degree. The average degree

〈k〉 corresponds to twice the initiation-capacity Q which is set to 5 in all conditions.

As Watts and Strogatz [232] have argued, this comparison allows to identify

whether our networks have complex network features, particularly the small world

property. To explain, the average path length l indicates the average number of

network ties that form the shortest path between two nodes in the network. The

clustering coefficient C measures the extent of overlap between the ego-networks of

related nodes. Complex networks are characterized by an average path length that

is similar to graphs with a random structure, while at the same time the degree of

clustering is much higher. Moreover, in complex networks the average path length

increases logarithmically in network size, just as in random networks. A compari-

son of the columns for the average path lengths lLO and the clustering coefficient

CLO generated by the local interaction model with the corresponding properties of

random graphs, lrand and Crand shows that our model indeed generates networks

with small world properties. More specifically, we find that across all conditions

the LO-networks have similar average path lengths compared to random graphs of

the same size and average degree, lLO ' lrand, and the clustering of LO-networks is

much higher compared to these random graphs, CLO � Crand.

Table 8.1 furthermore shows that the LO-networks also satisfy the small world

criterion proposed by [223]. According to this criterion, lrandC
lCrand

� 1 in a small world

network. Table 8.1 also highlights an important difference between the Barabási-

Albert mode (BA) [22] and the local optimization model (LO). The clustering

coefficient of networks generated by the local optimization model is much higher

compared to the corresponding BA-networks, CLO � CBA. As discussed in section

3.2.1, these high clustering coefficients can be seen as an indication that our model

corresponds well to the structures that many social networks exhibit. Remarkably,

like the Barabási-Albert model, most other models in the literature fail to reproduce

clustering coefficients that are comparably high.

To shed light on the specific types of complex networks generated by the local

optimization model, we studied the emergent degree distributions. Figure 8.2 shows

the degree distribution of networks produced with the LO model under varying cost

to benefit ratios and knowledge exchange mechanisms. The horizontal axes in the

graphs represent the degree, scaled logarithmically, and the vertical axes indicate

the frequency and the degree frequency with which the corresponding degree occurs

in the network, also scaled logarithmically. The typical pattern of a power-law

complex network in such a graph is a straight declining line, indicating that the

number of nodes with a particular degree decreases with the degree to the power

of a constant. The figure 8.2 shows that depending on the exact conditions of the

exchange, different kinds of distributions are observed. We can identify three clearly



126 CHAPTER 8. COMP. NET. THROUGH LOCAL OPTIMIZATION

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

P
(k

),
 P

c(
k)

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
0

10
1

10
2

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

k

P
(k

),
 P

c(
k)

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

k
10

0
10

1
10

2
10

−4

10
−2

10
0

k

P(k)
P

c
(k)E/B=0 

E/B=0 

E/B=6/16 

E/B=7/16 E/B=9/16 

E/B=9/16 

Figure 8.2: Degree distribution obtained through Local Optimization. The dots are

the degree distribution P (k) (frequency of nodes with degree k). The line with the

plus sign is the cumulative degree distribution Pc(k). Parameters: Q, or 〈k〉
2 = 5, N

= 10000, M = 500, C = 400. First row: explicit memory exchange. Second row:

implicit. Cost to benefit ratio: E
B = {0, 6

16 , 9
16}, for explicit memory exchange, and

E
B = {0, 7

16 , 9
16} for implicit

distinct types:

1. star-like distribution (left sub-figures within figure 8.2, E
B = 0): These networks

can be classified as central-periphery networks, where a small subset of nodes

forms a highly clustered core network, and the majority of remaining nodes

connects solely to the core. In other words, most nodes have either a small or

a high number of relationships, but nodes with intermediate degree are rare.

2. potential distribution (central sub-figures within figure, 8.2, E
B = 6

16 and
E
B = 7

16): In these networks, low degrees are most frequent and high degrees

are least frequent. More specifically, the characteristic property of a potential

distribution is its power-law structure, i.e. P (k) ∼ k−γ , where γ is the expo-

nent that indicates the rate of decline of degree frequency. These networks,

also called power-law networks, or scale-free networks are by many authors seen

as the paradigmatic case of complex networks, due to their amazing robust-

ness and efficiency (see section 3.2.1). Most of the complex network literature

heavily focuses on this type of networks. Power-law networks generally have
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Figure 8.3: Cumulative degree distribution obtained through Local Optimization.

Parameters: Q, or 〈k〉
2 = 5, N = 10000, Mc = 200, C = 150. Left figure: ex-

plicit memory exchange. Right figure: implicit. Cost to benefit ratio: E
B =

{0, 4
16 , 6

16 , 8
16 , 11

16}. The solid line is the analytical power-law degree distribution with

γ = −3 in the left figure, and γ = −3.3 in the right figure

small world properties, but not all networks with small world properties are

necessarily power-law. Potential distributions allow nodes to have a very high

degree, therefore, the degree distribution displays the heavy-tail effect. That

is not a unique feature of power-law networks, it is also observable in star-like

networks, although their degree distribution do not follow a straight line in

the log-log scale.

3. exponential distribution (right sub-figures in figure 8.2, E
B = 9

16 ): For ex-

ponential distributions the probability density is P (k) ∼ θ−k. In practice,

exponential degree distributions are similar to power-law distributions, with

the main difference that the frequency of degrees tends to decline faster to zero

as the degree increases, therefore the characteristic heavy-tail of the power-law

distribution disappears. This is exemplified by the different scaling of the hori-

zontal axes in figure 8.2 for power-law and exponential structures, respectively.

As the figure 8.2 shows, in the exponential networks the frequency of nodes

with a certain degree tends to decline to zero before the degree exceeds 100,

whereas degrees up to the maximum of 400 still can occur in the power-law

structures .

To further illustrate the qualitatively different network patterns shown in figures

8.2 and 8.3, we replicated the simulations for a set of conditions that allows easy

graphical representation of the network topology (N = 200, Mc = 150, C = 150,

Mo = 10, Q = 1, ME = explicit). Figure 8.4 shows three different networks

obtained by the LO-model for three different levels of E
B . The graphs confirm visually

the three qualitatively different regimes. The star-like structure in the leftmost figure
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is exemplified by two big clusters that each center around a few highly central nodes.

The power-law pattern (middle figure) shows a few highly connected nodes in the

center of the graph, with layers of nodes surrounding the center that are increasingly

less connected as they are more distant from the center. Finally, the exponential

regime (rightmost figure) exhibits a more modest level of centralization than the

power law graph, visually represented by a less clearly accentuated center-periphery

structure. We used the layout proposed by Kamada and Kawai [127] to draw the

graph.

To summarize, the above figures show that the local interaction model can gen-

erate not only power-law structures, like many other models in the literature, but it

also produces central-periphery networks and small world networks with exponen-

tial degree distribution. To explore model robustness, we repeat in figure 8.3 the

experiment for different memory size Mc, and capacity C. The figure shows that

the same qualitatively different structures appear than in the previous experiments.

We only graph the cumulative degree distribution Pc(k) in figure 8.3 and the follow-

ing figures, because this is a better statistical estimator for small samples than the

degree distribution.

To what extent do the results of the local interaction model correspond to struc-

tures generated by a model that is specifically designed to reproduce complex net-

work structures? To answer this question, we used the model proposed by Krapivsky

et al. [143] who extended the original preferential attachment algorithm of Barabási

and Albert [22]. Preferential attachment can be formulated as the assumption that

the likelihood of receiving a new relationship increases with the node’s connectivity

degree ks. Formally, π[ks(t)] = ks(t)
P

ks(t)
. In [143] Krapivsky et al. extended the pref-

erential attachment to be non-linear, that is, π[ks(t)] = ks(t)
α

P

ks(t)
α . It turns out that

this model generates three distinct regimes depending on α that clearly correspond

with the qualitatively different patterns generated by the LO-model:

1. Linear case (α = 1.0): this is the original Barabási-Albert model, which pro-

duces the well-known power-law degree distribution P (k) ∼ k−γ , where γ = 3.

2. Sub-linear case (α < 1.0): the degree distribution is an stretched exponential of

the form P (k) ∼ k−αe−Ak1−α
. However, when α tends to 1.0 the potential part

dominates the exponential becoming very similar to a power-law distribution

with an exponent γ > 3.

3. Super-linear case (α > 1.0): In this regime there is no analytical solution, but

for α > 2.0 a winner takes all phenomenon emerges, such that almost all the

nodes connect to a single node. 8.2) for the LO-model.

Figure 8.5 illustrates those different regimes. The displayed data has been gen-

erated using the original Barabási-Albert algorithm with a couple of modifications:
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Figure 8.4: Network obtained by the model LO. Parameters: N = 200, Mc = 150,

C = 150, Mo = 10, Q = 1, ME = explicit. The graph a is for E
B = 0 and

corresponds to a star-like network. The graph b is for E
B = 2

16 and corresponds to

a power-like network. The graph c is for E
B = 8

16 and corresponds to a exponential

network.
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Figure 8.5: Cumulative degree distribution of non-linear preferential attachment

1) replacing the linear preferential attachment by the non-linear tuned by α, and 2)

setting a maximum degree in order to match the capacity of our LO model.

We can observe that the non-linear preferential attachment yields different net-

work structures that matches those obtained with the LO model. For α > 1.0 we

obtain a star-like structure. For α = 1.0 we obtain a power-law. For α > 0.75 we

obtain power-law with an exponential influence. And, for α < 0.75 the exponential

part clearly dominates the power-law one. In the last case there is no preferential

attachment. In this case, the probability of node i being chosen by a new node

entering the network is P (i) = 1
n , where n is the current number of nodes. Without

preferential attachment the degree distribution is exponential.

We now turn to a closer inspection of the conditions that shape the topological

features of the emergent networks in our simulations. Figures 8.2 and 8.3 show

the simultaneous effects of two conditions, the cost to benefit ratio in exchanges

in the support game E
B and the variation between explicit and implicit knowledge

exchange. Moreover, between these two figures there is the effect of memory size

Mc and capacity C. The results demonstrate that particularly the ratio E
B as one

aspect of the harshness of the exchange game strongly affects the macro-structure

that arises from agents’ micro-behavior. At the same time, network structures seem

to be more robust against variation in agents’ learning capacity. We discuss effects

of both conditions in turn, starting with effects of the cost to benefit ratio.

First, we analyze the cost to benefit ratio effect. Thus, we focus on the left

sub-figure of figure 8.3. A star-like structure appears when actors face no social
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dilemma or a very mild one, since the cost of giving support is very low compared to

the benefit. Thus, we are in a situation of mild harshness of the game ( E
B = [0.. 3

16 ]).

When costs increase and, consequently, the game becomes harsher ( E
B = [ 4

16 .. 7
16 ]),

the star-like structure is replaced by a power-law. This in turn is replaced by an

exponential structure as soon as the cost to benefit ratio increases up to ( E
B ≥ 8

16 ).

Why do we see these effects? Let us first consider the case of zero costs. In this

situation, all agents get sooner or later acquainted with the most attractive system

members and many of them actually exchange cooperatively with highly attractive

agents. The reason is that due to zero costs these agents can benefit even from

exchanges with the least attractive system members and thus do not reject them.

As a consequence, the most attractive members of the population soon become

known throughout the network as the most desirable interaction partners. They

receive many proposals for interaction which are accepted until these agents exhaust

their interaction-capacity. In the course of this learning process, highly attractive

members tend to gradually optimize their network so that eventually the core arises

in which highly attractive agents mainly relate to each other. This leaves little room

for less attractive agents to relate to the core. Many less attractive members are

frustrated in their search for further improvement by the frequent rejections they

received. The graphs in the left column of figure 8.2 demonstrate a paradoxical

consequence of these dynamics: despite the low costs of exchange, a large number

of agents has a very sparse network in this condition with only ten or less exchange

partners. This combination of large numbers of sparse ego networks with a highly

connected core generates the star-like pattern.

When costs of the exchange are moderate relative to the benefit, a power-law

structure emerges. In this situation, the most attractive agents are more likely to re-

ject interaction proposals from less attractive members even before their interaction

capacity is exhausted, or they may defect once an interaction has been established.

As a consequence, knowledge about the most attractive agents spreads slower and

to less recipients than in the zero-cost condition. Agents throughout the network

hold more different perceptions of who may be a desirable interaction partner for

them than in the zero-cost condition. The reason is that now there is no absolute

top that is optimal for everybody. Because the social dilemma is harder, less attrac-

tive agents are more often exploited than in the zero cost condition. Accordingly,

these agents become more conservative in their partner search. Exploration tends

to diminish and the system ends sooner in a stable configuration than in the zero

cost condition. This explains why the resulting degree distribution is thicker for in-

termediate degrees than in the star-like structure and thinner in the right tail. Now

also agents with intermediate attractiveness are often chosen as interaction partners

and there are less agents who become highly popular stars in the network.

Finally, when exchange costs are high, the conditions under which agents are
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willing to cooperate are very restrictive. A focal agent is now only willing to coop-

erate when his interaction partner has very similar or higher attractiveness. As a

consequence, the large majority of network members experiences that most of the

interactions they try fail, or they get exploited in these interactions. Gradually most

network members stick to those partners with whom they have positive experience

and interact only with a small subset of all network members. Interaction networks

tend to be less optimized than under milder social dilemma conditions. In particu-

lar, in many instances potential cooperation partner of the most attractive network

members fail to find them before they stop exploration. Correspondingly, these most

attractive members receive less choices than in milder circumstances. This explains

why the resulting degree distribution is thinner in its right tail than the power law

pattern that we found for moderate social dilemmas.

However, the topology of the simulated networks is not only affected by costs

and benefits of the exchange but also by conditions that shape the efficiency of

agents’ learning process. Figures 8.2 and 8.3 show that under most conditions the

network structures for implicit and explicit knowledge exchange are very similar, yet

in some cases there are differences. For instance, in figure 8.3 we can observe that

when E
B = 4

16 explicit memory exchange ends up in a power-law distribution, while

implicit memory exchange yields a star-like distribution.

To explore effects of memory exchange with more precision, we conducted a more

fine-grained analysis of the interaction effect between cost to benefit ratio of and

mode of memory exchange, upon network topology. We simulated both explicit and

implicit memory exchange for cost-benefit ratios varying in the range E
B : [0..1416 ].

Further parameters of the model are equal to those used for figure 8.3, that is:

N = 10000, Mc = 200, C = 150 and Q = 5. To distinguish network structures

quantitatively we use two different measures:

1. the determination coefficient of the cumulative potential regression r2. This

coefficient indicates how well the observed degree distribution can be fitted

to the cumulative potential function P (k) ∼ k−θ. A determination coefficient

equal to or larger than r2 = 0.95 implies a good fit of the regression (for N =

1000 we lower the acceptance threshold to 0.9, because for this small number

of nodes statistics are very sensitive to random perturbations). Accordingly,

the observed degree distribution can be classified as a potential distribution of

exponent −θ. Unfortunately, this measure is problematic when the statistics

are poor. In this particular case the maximum degree is relatively small, which

makes it difficult to discriminate between an exponential distribution and a

power-law with a exponential cutoff. In order to overcome this problem rely

on an additional measure, the variance of the degree distribution.

2. variance of degree 〈k2〉

〈k〉2
. This ratio measures the variance between the real
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Figure 8.6: Classification in the star-like, power-law and exponential regimes of the

networks generated by the LO model. Parameters: N = 10000, Mc = 200 and

C = 150. The cost to benefit ratio E
B of the support game varies from 0 to 14

16 .

Left sub-figure: Explicit Memory Exchange. Right sub-figure: Implicit memory

exchange. r2 is the determination coefficient of the regression over the cumulative

degree distribution. The dashed line is variance of degree for a network generated

using the non-linear BA-model for α set to 0.75, with maximum degree set to 150,

number of nodes set to 10000 and m set to 5, so then 〈k〉 = 10. The dotted line

identify the boundaries between regimes.

connectivity degree compared with the average degree. In the case of a random

network this ratio would be close to 1.0, since nodes’ degree do not deviate

from the average. However, when heavy-tails are observed it means that there

are nodes whose degree is much higher than the average degree. Therefore,

this measure is very useful to discriminate between power-law and exponential

structures. On the other hand this measure does not discriminate between

power-law and star-like, since both distributions display heavy-tails. In that

case, we rely on the regression’s determination coefficient.

More precisely, to determine the type of distribution we use an algorithm that

works as follows: If
〈k2

LO〉

〈kLO〉2
<

〈k2
Non−Lin−BAα=0.75

〉

〈kNon−Lin−BAα=0.75
〉2

then the distribution is exponential.

Otherwise, we check the determination coefficient of the potential regression rLO. If

r2
LO < 0.95, then the distribution is star-like. Otherwise, it is power-law.

Figure 8.6 reveals profound interaction effects between the ratio of cost to ben-

efits in the exchange game and the type of memory exchange on the qualitative

structure of emergent networks, indicated by the different size of the regions of star-

like, potential and exponential degree distribution in both sub-figures. Broadly, the
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pattern that we find is that both higher cost to benefit ratios and the efficiency of

memory exchange determine how difficult it is for agents to find suitable exchange

partners. The higher this difficulty, the closer the network matches the exponen-

tial distribution. Conversely, the easier suitable exchange partners can be found,

the more similar the patterns become to a star-like central-periphery structure. In

between these two extremes, we find networks with power-law degree distributions.

To illustrate these interaction effects we focus on two specific scenarios.

Consider the case where E
B = 6

16 . With explicit memory exchange (left part

of figure 8.6) the LO-model generates a power law network, whereas we obtain an

exponential structure under implicit memory exchange. Why this difference? In

this condition, the costs of giving support are relatively high. Accordingly, agents

experience often exploitation on their interactions, or rejection on their proposals

to interact. As a consequence, agents’ memory contains a lot of information about

suboptimal or even non-profitable exchange partners. Implicit memory exchange

exacerbates the difficulties of finding suitable partners in this condition, because

agents get only randomly generated information from their interaction partners.

Thus, with implicit memory exchange it is very likely that after an interaction, an

agent receives a reference to at best a mediocre third party, so that the process of

finding attractive partners is slow and inefficient in comparison with explicit memory

exchange. With explicit exchange, the references agents receive are filtered, so that

bad entries are not propagated. As a result, highly attractive agents are found by

a larger number of advice seekers so that relatively more highly attractive network

members obtain a high degree. This explains why in this particular condition explicit

memory exchange results in a power law network while implicit memory exchange

yields an exponential distribution.

Effects of memory exchange are strikingly different when we look at the other

end of the spectrum where the social dilemma actors face is mild. Consider the

case E
B = 3

16 . Figure 8.6 shows that in this condition explicit memory exchange

entails a power-law structure, while under implicit memory exchange the structure

is closer to a star-like pattern than to a power-law network as can be observed in

figure 8.2 left-bottom sub-figure. Notice that this is just the opposite of the effect

that we observed before. This time, explicit memory exchange generates the pattern

that corresponds to the less favorable social dilemma structure as compared to the

result of implicit memory exchange, while in the previous case this was reversed.

The reason is that under explicit memory exchange references to third parties are

filtered. As a consequence, all agents recommend more or less the same very limited

subset of potential interaction partners, who in turn — are not capable to process all

interaction proposals they receive. The frequent occurrence of rejections introduces

a large amount of noise in the system. By noise we mean here that many agents

get distorted perceptions of the real attractiveness of the other network members so
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Table 8.2: Regimes boundaries for different settings in terms of cost to benefit ratio

(E
B ). Settings: Mo = 150 and A) N = 10000,M = 500,Mc = 400, Q = 5, B)

N = 10000,M = 500,Mc = 400, Q = 10, C) N = 10000,M = 200,Mc = 150, Q = 5

D) N = 5000,M = 200,Mc = 150, Q = 5 E) N = 1000,M = 200,Mc = 100, Q = 5

Setting Mem. Exch. Star-like Reg. Power-law Reg. Exponential Reg.

A Explicit [0.. 5
16 ] [ 6

16 ] [ 7
16 ..1416 ]

A Implicit [0.. 6
16 ] [ 7

16 ] [ 8
16 ..1416 ]

B Explicit [0.. 3
16 ] [ 4

16 .. 6
16 ] [ 7

16 ..1416 ]

B Implicit [0.. 4
16 ] [ 5

16 ] [ 6
16 ..1416 ]

C Explicit [0.. 2
16 ] [ 3

16 .. 6
16 ] [ 7

16 ..1416 ]

C Implicit [0.. 4
16 ] [ 5

16 ] [ 6
16 ..1416 ]

D Explicit [0.. 2
16 ] [ 3

16 .. 7
16 ] [ 8

16 ..1416 ]

D Implicit [0.. 4
16 ] [ 5

16 ] [ 6
16 ..1416 ]

E Explicit [0.. 2
16 ] [ 3

16 .. 4
16 ] [ 5

16 ..1416 ]

E Implicit [0.. 3
16 ] [ 4

16 ] [ 6
16 .. 5

16 ]

that they can not find the best available interaction partner. By contrast, in implicit

knowledge exchange the references are not filtered, but random. Here, not all agents

try to get connected to the same subset of stars. The subset of potential partners

that are perceived as highly attractive is wider, so that less interaction requests

are rejected and more new interactions take place. In the long run, this fosters

the efficiency of agents’ learning process and highly attractive agents can be found

and accessed by a more network members. This, in turn, drives the system more

towards a star-like structure than under the explicit memory exchange mechanism,

where agents sooner stop exploring due to frequent rejections.

So far, we have shown the effect of the cost to benefit ratio E
B and the memory

exchange process ME for a particular setting of the model, concretely, when number

of agents N is 10000, the memory size Mc is 200, and the capacity C is 150. In order

to test consistency of the model we conducted the same analysis for other settings,

changing parameters N , Mc, C and Q. The results are summarized in the table 8.2.

Table 8.2 shows how despite having different population size N , memory size

Mc, capacity C and initiation capacity Q all the analyzed settings are consistent

with previous simulation runs. All settings display the three regimes, mainly distin-

guished in terms of cost to benefit ratio or support game harshness. Furthermore,

the kind of memory exchange used affects the boundaries and the size of the power-

law regime in a similar way as for setting C, which was the subject of the detailed

analysis. Therefore, the detailed analysis carried out for setting C is also applicable
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Figure 8.7: Comparison of distributions for the local optimization model. For the

BA model we are using the original algorithm proposed by Barabási and Albert.

In the left sub-figure we compare the graphs generated by both models for differ-

ent networks size N . In the right sub-figure we compare the graphs for different

initiation-capacity Q, which is the number of link that a node can deploy in the

BA-model, that is to say, m. For the LO-model the memory exchange is always

implicit, and the Mo is 150. See the legend for the rest of the parameters. Notice

that the LO-model contains a capacity constraint C, which is set at C = 150 and

C = 400 for left and right sub-figure, respectively.

to other settings.

Finally, we wish to test explicitly to what extent our LO-model can match results

obtained from the original BA-model. For this purpose, we compared the results of

both models with regard to simultaneous effects of the population size N and the

initiation-capacity Q. We have shown the effect of the population size already in

the previous results but we did not compare the obtained degree distributions for

the two models. Figure 8.7 shows that the networks generated by the LO-model

scale similarly to those obtained from the BA-model, both for the effect of N and

the effect of Q on degree frequency. Moreover, the networks for both models seem

to be very similar.

8.4 Discussion

We have argued that a sociologically plausible model of the micro-mechanism un-

derlying complex network emergence needs to meet the following criteria. First, the

locus of decision making about network changes should be at the level of individ-

ual actors. Second, individual decisions should be derived from the optimization of
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individual goals based on bounded rational decision heuristics. Third, individual

agents should use only local and imperfect knowledge of network characteristics to

make decisions. Finally, the model should not trivialize conflicts between agents’

interests with regard to the network changes they prefer. We proposed an agent-

based computational model that satisfies these requirements, the local-interaction

model (LO-model). The model describes network change as a consequence of a so-

cial exchange process in which agents differ in attractiveness, are initially unaware

of their own and others’ attractiveness, are free to change partners and acquire

through interaction gradually local and partially distorted knowledge about others’

attractiveness. In our model, agents seek to optimize their exchange relations based

on backward-looking simple decision heuristics.

The model’s assumptions rely on general theories of boundedly rational human

decision making (e.g. [205, 213]) that have partially been validated in experimen-

tal research, but have not been specifically tested for individual decision making

in making and breaking relations in social networks. While we believe that this

is a significant step forward with regard to previous models of complex network

emergence, we readily admit that more careful empirical studies of social network

dynamics is needed to test underlying micro assumptions. One approach in partic-

ular that promises to be fruitful for this is the technique developed by Snijders [206]

of actor oriented statistics, which is specifically designed to disentangled based on

longitudinal network data the various individual motives that may drive network

change.

We conducted simulations to explore how social conditions identified by the local

interaction model may shape the structure of emergent networks. First and fore-

most, we found that despite the minimal and sociologically plausible assumptions

we made about agents’ knowledge and cognition, our model can replicate the cel-

ebrated small world and power-law network structures that have recently received

much attention in the literature, due to their high robustness and efficiency for infor-

mation propagation. We believe that for social network analysis, this is a significant

improvement compared to previous models based on the mechanisms of preferen-

tial attachment and random rewiring. These models needed to employ implausible

assumptions of globally available knowledge about structural positions or failed to

explicate the individual goals and cognitions that motivate actors’ decisions to make

or break ties.

The second main result presented in this chapter is that the topological structure

of the emergent social networks depends heavily upon the harshness of the exchange

game, in particular the ratio of costs to benefits in a social exchange, and conditions

that shape the learning capacities of agents, in particular the accuracy of information

they receive about attractive exchange partners from their network relations. We

show that it depends on the combination of these conditions whether star-like, small
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world or power-law network structures emerge. Broadly, the pattern that we find

is that both higher cost to benefit ratios and the efficiency of memory exchange

determine how difficult it is for agents to find suitable exchange partners. The

higher this difficulty, the closer the network matches the exponential distribution.

Conversely, the easier suitable exchange partners can be found, the more similar the

patterns become to a star-like central-periphery structure. In between these two

extremes, we find networks with power-law degree distributions.

Our results not only show that complex networks can in principle arise from

sociologically plausible behaviors of individual agents, but we have also obtained

substantive insights that could not be derived from previous models of complex

network emergence. The main reason we could do this is that our model contains

parameters that relate to the costs, benefits and risks of social exchange actions,

something that was not present in the mechanistic microassumptions based on ran-

dom rewiring or preferential attachment. Accordingly, we believe that our insights

may be fruitful for fields of research such as the study of social support or of the

emergence of trust. In a society that faces a high level of harshness, e.g. in terms of

the scarcity of material resources or harsh climatic living conditions, social support is

both particularly needed and prone to social dilemma problems. Our model suggests

that this should also show up in the network structures that arise in such a society.

We find in our simulations that — paradoxically — the harsher are the conditions

— that is: the more costly it is for actors to support others — the sparser and the

less optimized are the emergent structures of support exchange. Such a hypothesis

might be tested in a cross-national comparison where the relationship between eco-

nomic wealth and the structures of social networks in different countries or regions

is addressed. With regard to reputation and trust we find a similar paradoxical

consequence of harshness. In harsh conditions actors are particularly vulnerable to

exploitation by untrustworthy interaction partners. However, according to our anal-

ysis it is exactly here where emergent networks are least efficient for spreading the

reputational information that actors need to protect themselves against exploitation.

This, in turn, may imply the testable hypothesis that in poorer societies people need

more time to develop trust into new potential interaction partners (e.g. immigrants)

because it takes longer before they have information available that allows to assess

these strangers’ reputation.

Our work also adds a new note to research studying the effects of social network

structures on cooperation in social dilemmas. Cohen et al. [52] have argued that it

is mainly the stability of interaction structures in social networks and not so much

their clustering that is needed to sustain cooperation. However, in their work they

have treated interaction structures as an exogenous condition. We show instead

how in the search for both attractive and cooperative partners agents may self-

organize networks that are clustered and stable and sustain cooperative behavior
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in social dilemmas. Emergent complex networks may be important for cooperation

in a heterogeneous setting, because they match those pairs of agents who find each

other sufficiently attractive to cooperate with each other in an exchange. This result

also resonates with another recent study by Egúıluz et al. [77], in which the authors

emphasize that cooperative role models may drive the self-organization of complex

networks that sustain cooperation in social dilemmas.

Finally, we assume that agents are benevolent in the sense that they always

cooperate with exchange partners as long mutual cooperation is preferable to mutual

defection. The latter assumption in particular neglects the problem of opportunistic

behavior that much of the social dilemma literature [16] deals with. However, we

wish to point out that we did not entirely trivialize the problem of opportunism.

Exploitation and unilateral defection of agents is possible and does occur in our

model, but more sophisticated decision makers might exhibit these behaviors even

more than our benevolent agents. Based on strategies already explored by Axelrod,

a possible model extension here could be that agents vary in the extent to which

they try to test the waters with occasional defections and then continue to defect

unless the exchange partners retaliate. This obviously adds an extra dimension to

the difficulties of finding an appropriate partner in our exchange game. We expect

that the basic conclusion analysis will remain the same also for this complication.

The more agents follow opportunistic strategies, the more difficult it is for them

to find suitable partners and the more the emergent network will then exhibit an

exponential degree distribution rather than a star-like structure.

Notwithstanding the need to explore in future work alternative, perhaps more

realistic sets of assumptions, we believe this chapter offers an explicit model of

sociologically plausible micro-processes that can generate a range of qualitatively

different complex network structures.
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Chapter 9

Conclusions

Besides the particular summaries that are located at the end of each chapter we also

want to sum up briefly the content of this thesis as a whole.

Throughout the research presented in this thesis we have contributed with evi-

dences that support the leitmotif that best summarizes our work: structure matters.

The structure of the network formed by the relationships of the individuals is indeed

a very important factor that governs the dynamics of complex social systems, both

at the micro and macro level. Moreover, structure also contains underlying knowl-

edge about both levels. Therefore, by analyzing the structure, useful information

about both the individuals and the systems can be acquired.

The aim of this thesis was not to hackle a well defined problem and to offer

a solution, but rather it was an attempt to contribute to a body of research that

turns to the structure of the relationships in order to gain better understanding of

a system. Thus, our research is not a methodology to design or engineer artificial

societies but a compilation of evidences that point out towards the need to consider

the structure as a key factor of the system’s dynamics. Although we also provide

tangible methods, i.e. the algorithms to extract knowledge from the structure of the

social network, most of our research is descriptive.

However, one must take into account that understanding is a necessary condition

prior designing or engineering. Therefore, we believe that our findings and results

might prove useful for multi-agent system research on its path towards the design

and building of full-fledged artificial societies. To that purpose not only the social

dimension of agents must be taken into account, but it is necessary to carefully

consider the underlying social structure of the system as well.

Although the domain we studied was focused on multi-agent systems, we believe

that the conclusions drawn by this thesis are directly applicable to other artificial

societies such as electronic communities and peer-to-peer systems. Furthermore, the

results are also relevant to the area of research dealing with complex social systems.
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Let us briefly review the contributions of this thesis in relation to its goals.

• In chapter 4 and 5 we presented two algorithms that used network topology

as a source of knowledge. The first algorithm is able to create a ranking of

agents by relevance that is a good approximation to reputation. Thus, repu-

tation of an agent can be inferred just from its position in the social network.

The algorithm does not require to have complete information about the so-

cial network, i.e its adjacency matrix. The process is distributed through all

agents, so that only local information is required. Furthermore, the algorithm

adapts dynamically to different network topologies. The second algorithm,

presented in chapter 5, is intended to extract the community structure from

a network. By doing so, the groups of agents that form communities and

the relations between these communities are revealed. This algorithm aims

at improving time efficiency so that the community structure of very large

networks (hundreds of thousands nodes) can be retrieved in reasonable time.

The high efficiency of the algorithm does not come at the expenses of its ac-

curacy since the maximum modularity yielded by the algorithm is comparable

to the best algorithms in the current literature. So, this algorithm is indeed a

sound choice for medium and large [social] networks. In brief the algorithms

presented in the first part of the thesis are able to extract social measures such

as reputation, group membership and relationships between groups which are

valuable informations to navigate and interact in new societies. Therefore, the

analysis of the structure can be called upon as a means to reduce the inherent

complexity and uncertainty of open systems.

• In chapter 6 and 7 we saw how certain structures can favor the emergence

and stabilization of coordination at system-level. The same agents with the

same strategies will have different outcomes depending on the way agents are

interconnected. Thus, macro-behaviours such as agreeing on a convention do

not depend only on the strategies, or micro-rules, followed by the agents but

on the underlying pattern of interactions. We saw in chapter 6 how certain

structures — complex networks — promote the emergence of a convention in

a reasonable time. Properties found in complex networks, such as their short

diameter and short average path length, played a key role in the time required

for the system to converge to a convention. Complex networks are much more

efficient (in time) than other structures such as regular networks. In fact,

complex networks are as efficient as fully connected networks, which are clearly

unrealistic structures for a society design, since they imply global information

and connections without cost. Furthermore, in chapter 7, we showed that if the

structure displays a high clustering coefficient, which is a characteristic of social

networks, not only the time of establishment of a convention, but also which
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convention is eventually established is also affected by structure. Clustered

networks lead the agents to adopt socially efficient conventions which, in turn,

are stable against invasion of sub-optimal conventions. And they are so under

a much wider range of conditions than in a non-clustered network. Most

interestingly, the structural properties that facilitate the coordination regime,

both in terms of time efficiency and in terms of choosing the socially efficient

convention, can be found in many empirical complex systems.

• In chapter 8, we presented a model for complex network formation, notably

power-law, small-world and center-periphery networks. Unlike most models of

complex networks emergence, our model does not require implausible assump-

tions like global knowledge about structural position. The model presented

also makes explicit the motivations that the agents have in order to start or

terminate relationships with other agents. Thus, we showed that self-interested

agents, performing a local optimization process grounded in social theory, are

able to self-organize and arrange themselves into the same complex structures

that are found in many real complex systems across very different domains.

These structures — complex networks — are not the result of a centralized

design but rather the consequence of the interactions between autonomous

agents. We provided a model that requires neither global and perfect infor-

mation nor it assumes implausible behavioural assumption to explain complex

networks formation.

The research presented in this thesis is supported by several peer-reviewed pub-

lications. We include below a selection of these publications. Table 9.1 summarizes

the correspondence between publications and thesis’ chapters. All publications can

be found at the authors personal homepage.1
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International Joint Conference on Autonomous Agents and Multi-Agent Sys-

tems AAMAS-02. Vol. 1, pp 467-474. Bologna, Italy (2002).

2. Pujol, J.M., Sangüesa, R. and Delgado, J. A Ranking Algorithm Based on

Graph Topology to Generate Reputation or Relevance. In Web Intelligence

(Ning Zhong, Jiming Liu, and Yiyu Yao eds.), ch 18, pp 382-395, Springer

Verlag (2003), ISBN: 3-540-44384-3.

3. Delgado, J., Pujol, J.M. and Sangüesa, R. Emergence of Coordination in

Scale-Free Networks. In Web Intelligence and Agent Systems Journal 1 (2003),

131-138.
1http://www.lsi.upc.edu/∼jmpujol/publications.html
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ropean Conference on Artificial Intelligence ECAI-04 (López de Mántaras,R.
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The final conclusion not only of this thesis but also of the Ph.D. is best sum-

marized by the quote we started this document with: To travel hopefully is a better

thing than to arrive, and the true success is to labour. It would be difficult to de-

scribe the process so accurately using less words. The true meaning of my research

was not as much the Ph.D. as it was the joy of playing. I have no words of my

own to thank the wonderful partners I had in my travel, poorly summarized in this

document. Thanks to all, and especially to Ramon, Jordi and Andreas.



Appendix A

Pseudo-Code of the Models

As Macy and Flache pointed out in [87], one of the most important practices in

agent based modeling is to facilitate independent replication of the models (see

section 2.4.1 for a complete list of best practices). To that end, we provide a brief

but comprehensive sketch of the models we have presented in this thesis (chapters

6, 7 and 8).

For the sake of clarity we focus only on the core of our model; the agent behaviour

mainly. We do not cover manipulation of data structures, graphical display or

collecting results. Do not hesitate to contact the author to get the sources.

A.1 Emergence of Conventions

Declarations

define A 1 // action A

define B 2 // action B

define GSM 10 // update rule

define HCR 11 // update rule

int N; // number of agents

int Ms; // memory size

int Q; // number of neighbours average connectivity is Q*2

int update; // defines the update rule to be used (GSM or HCR)

int layout; // the underlying network topology (see section 6.2)

double Beta; // part of the GSM update rule (eq 6.3.1)

double[2][2] G; // payoff matrix (figure 6.3)

Graph network; // the network that contains the underlying topology
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Agent {

double[2] outcome; // acumulated outcome of action A and B

int pointer; // next memory slot to be used

int action; // the current action (A or B) played by the agent

}

Agent mpAgents = Agent[N]; // vector of agents

double[N][Ms][3] mpMemory; // agents memory,

// mpMemory[agent][memory_position][x]

// where x is

// 0: the action (casted to int)

// 1: the outcome

// 2: the time (casted to int)

// of the interaction agent ’agent’ had stored

// in its memory at the position

// ’memory_position’

Initialization

// initialization of the model

procedure init() {

Agents mpAgents = new Agent[N];

for each agent in agents {

mpAgents[agent].pointer=0;

mpAgents[agent].outcome[A]=0;

mpAgents[agent].outcome[B]=0;

if (random()<0.5) mpAgents[agent].action=B;

else mpAgents[agent].action=A;

}

// setting the agents’ interactions

network = init_network(layout);

}

// initialize the graph that contains the underlying pattern of interactions

// complete, regular, small-world or scale-free networks. See section 6.2
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function init_network(layout);

Agent’s Behaviour

procedure main() {

init();

time=1;

stop=false;

do {

agent=random(1,N); // choose one agent at random;

run(agent,time); // agent’s behaviour

time=time+1;

ratioA=ratioA();

// evaluates the stop criterion, Tc is set to 90%

if ((rationA>0.9) || (ratioA<0.1)) stop=true;

else stop=false;

} while(!stop);

} //end main

// agent’s behaviour

procedure run(agent, time) {

// a neighbour of agent is choosen at random

partner = chooseNeighbour(agent);

if (update==GSM) {

// if the update rule is GSM

updateActionGSM(agent);

}

else {

// if the update rule is HCR

// agent and partner play the coordination game G defined in figure 6.3

[outcome1, outcome2, action1, action2] = playGame(agent,partner);

updateMemory(agent,outcome1,action1);

updateMemory(partner,outcome2,action2);

// action update rule Highest Cumulative Reward (see section 6.3.2)
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updateActionHCR(agent);

updateActionHCR(partner);

}

}

// functions required for the HCR case

// agents play the game defined in figure 6.3

function [outcome1, outcome2, action1, action2] = playGame(agent1, agent2) {

action1 = mpAgents[agent1].action;

action2 = mpAgents[agent2].action;

outcome1=G[action1][action2];

outcome2=G[action2][action1];

}

// updates the agent’s memory with the last interaction

function updateMemory(agent, outcome, action) {

if (mMemory[agent][mpAgents[agent].pointer][2]>=0) {

// the memory slot has been used, so the accumulated payoff needs

// to be updated (we need to substract the outcome of the interaction

// to be forgotten needs)

mpAgents[agent].outcome[mMemory[agent][mpAgents[agent].pointer][0]]-=

mMemory[agent][mpAgents[agent].pointer][1];

}

// now the memory slot mpAgents[agent].pointer is free, and can be

// updated with the current interaction

mMemory[agent][mpAgents[agent].pointer][0]=action;

mMemory[agent][mpAgents[agent].pointer][1]=outcome;

mMemory[agent][mpAgents[agent].pointer][2]=time;

// the accumulated outcome needs to be updated

mpAgents[agent].pointer[mMemory[agent][mpAgents[agent].pointer][0]]+=

mMemory[agent][mpAgents[agent].pointer[1];

// the pointer has to be increased

mpAgents[agent].pointer=(mpAgents[agent].pointer+1)%Ms;

}
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// action update rule Highest Cumulative Reward (see section 6.3.2)

function updateActionHCR(agent) {

// if the acumulated outcome of action A is bigger than the accumulated

//outcomes of B then next action will be A, and vice versa

if (mpAgents[agent].outcomes[A]>mpAgents[agent].outcomes[B])

mpAgents[agent].action=A;

else if (mpAgents[agent].outcomes[A]<mpAgents[agent].outcomes[B])

mpAgents[agent].action=B;

}

// functions required for the GSM case

// action update rule Generalized Simple Majority (see section 6.3.1)

function updateActionGSM(agent) {

//

List l = getNeighbours(agent);

neigh_in_A = 0;

neigh = 0;

for each element in l do {

partner = element;

if (mpAgents[partner].action==A) neigh_in_A++;

neigh++;

}

// now evaluate the probability of replacing the agent’s action

// by its opposite, following eq. 6.3.1

if (mpAgents[agent].action==A) neigh_in_not_S = neigh-neigh_in_A;

else neigh_in_not_S = neigh_in_A;

pchange = 1 / (1 + exp(2*Beta((2*neigh_in_not_S)/(neigh-1))));

// now agent will update its state with probability pchange

if (random()<pchange) mpAgents[agent].action=(mpAgents[agent].action+1)%2;

}

// common functions
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// returns an int in the interval [i..f]

function random(int i, int f);

// returns the ratio of agents currently playing A

function ratioA();

// returns a neighbour of agent ’agent’ picked at random

function chooseNeighbour(agent);

// returns a list of all neighbours of agent ’agent’

function getNeighbours(agent);
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A.2 Emergence of Efficient Social Conventions

Declarations

define A 1 // action A

define B 2 // action B

int N; // number of agents

int Ms; // memory size

int rB; // initial number of agents playing action B

int Q; // number of neighbours average connectivity is Q*2

int layout; // the underlying network topology (see section 7.2.3)

double[2][2] G; // payoff matrix (figure 7.1)

double pImitation; // imitation propensity of action B

Graph network; // the network that contains the underlying topology

Agent {

double[2] outcome; // acumulated outcome of action A and B

int pointer; // next memory slot to be used

int action; // the current action (A or B) played by the agent

}

Agent mpAgents = Agent[N]; // vector of agents

double[N][Ms][3] mpMemory; // agents memory,

// mpMemory[agent][memory_position][x]

// where x is

// 0: the action (casted to int)

// 1: the outcome

// 2: the time (casted to int)

// of the interaction agent ’agent’ had stored

// in its memory at the position

// ’memory_position’

Initialization
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// initialization of the model

procedure init() {

Agents mpAgents = new Agent[N];

for each agent in agents {

mpAgents[agent].pointer=0;

mpAgents[agent].outcome[A]=0;

mpAgents[agent].outcome[B]=0;

if (random()<rB) mpAgents[agent].action=B;

else mpAgents[agent].action=A;

}

// setting the agents’ interactions

network = init_network(layout);

}

// initialize the graph that contains the underlying pattern of interactions

// random, regular, small-world or scale-free graphs. See section

// 7.2.3

function init_network(layout);

Agent’s Behaviour

procedure main() {

init();

time=1;

stop=false;

do {

agent=random(1,N); // choose one agent at random;

run(agent,time); // agent’s behaviour

time=time+1;

ratioA=ratioA();

// evaluates the stop criterion, Tc is set to 99%

if ((rationA>0.99) || (ratioA<0.01)) stop=true;

else stop=false;

} while(!stop);
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} //end main

// agent’s behaviour

procedure run(agent, time) {

// a neighbour of agent is choosen at random

partner = chooseNeighbour(agent);

// agent and partner play the coordination game G defined in figure 7.1

[outcome1, outcome2, action1, action2] = playGame(agent,partner);

updateMemory(agent,outcome1,action1);

updateMemory(partner,outcome2,action2);

// action update rule Highest Cumulative Reward (see section 7.2.2)

updateActionHCR(agent);

updateActionHCR(partner);

if (random()<pImitation) {

// with a probability pImitation it enters here

if (mpAgents[agent].action=B || mpAgents[partner].action=B) {

// at least one part played the ’contagious’ action (B), so both

// agents will play action B

mpAgents[agent].action=B;

mpAgents[partner].action=B;

}

}

}

// agents play the game defined in figure 7.1

function [outcome1, outcome2, action1, action2] = playGame(agent1, agent2) {

action1 = mpAgents[agent1].action;

action2 = mpAgents[agent2].action;

outcome1=G[action1][action2];

outcome2=G[action2][action1];

}

// updates the agent’s memory with the last interaction

function updateMemory(agent, outcome, action) {
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if (mMemory[agent][mpAgents[agent].pointer][2]>=0) {

// the memory slot has been used, so the accumulated payoff needs

// to be updated (we need to substract the outcome of the interaction

// to be forgotten needs)

mpAgents[agent].outcome[mMemory[agent][mpAgents[agent].pointer][0]]-=

mMemory[agent][mpAgents[agent].pointer][1];

}

// now the memory slot mpAgents[agent].pointer is free, and can be

// updated with the current interaction

mMemory[agent][mpAgents[agent].pointer][0]=action;

mMemory[agent][mpAgents[agent].pointer][1]=outcome;

mMemory[agent][mpAgents[agent].pointer][2]=time;

// the accumulated outcome needs to be updated

mpAgents[agent].pointer[mMemory[agent][mpAgents[agent].pointer][0]]+=

mMemory[agent][mpAgents[agent].pointer[1];

// the pointer has to be increased

mpAgents[agent].pointer=(mpAgents[agent].pointer+1)%Ms;

}

// action update rule Highest Cumulative Reward (see section 7.2.2)

function updateActionHCR(agent) {

// if the acumulated outcome of action A is bigger than the accumulated

//outcomes of B then next action will be A, and vice versa

if (mpAgents[agent].outcomes[A]>mpAgents[agent].outcomes[B])

mpAgents[agent].action=A;

else if (mpAgents[agent].outcomes[A]<mpAgents[agent].outcomes[B])

mpAgents[agent].action=B;

}

// returns an int in the interval [i..f]

function random(int i, int f);

// returns the ratio of agents currently playing A

function ratioA();

// returns a neighbour of agent ’agent’ picked at random

function chooseNeighbour(agent);
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A.3 Complex Networks through Local Optimization

Declarations

int N; // number of agents

int Mc; // memory size

int Mo; // initial number of agents in memory

int Q; // number of interactions that can be initiated

int C; // interaction capacity

double B; // Benefit

double E; // Effort

ME={Explicit,Implicit} // Memory exchange

Agent {

int id; // agent’s id

double alpha; // expertise of the agent

MemoryEntry memory;

}

MemoryEntry {

int agent; // agent in memory

int expout; // expected outcome of the agent

int time; // time of the last interaction.

// if time<-1 agent belongs to the unknown set

// if time==0 agent belongs to the known set

// if time>0 an interaction occurred at that time

}

Initialization

// initialization of the model

procedure init() {

Agents agents = new Agent[N];

for each agent in agents {

// init expertise of the agent in the [0.05..0.95] range

// with a 10^-3 precision

agent.alpha = (double)((random()*0.90+0.05)/1000);

agent.memory = new MemoryEntry[Mc];

for each me in agent.memory up to Mo {

me.time=-1;
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me.expout=0.0;

me.agent = random(N);

// check that the me.agent is different than the agent itself

// and it’s not already in the agent’s memory.

}

}

}

Agent’s Behaviour

procedure main() {

init();

time=1;

do {

createPermutationOfAgents();

do {

agent=getAgentFromPermutation();

run(agent,time);

removeAgentFromPermutation(agent);

} while(!isPermutationEmpty());

time=time+1;

} while(time<100);

} //end main

// agent’s behaviour

procedure run(agent, time) {

// chose a set of agents to interact with (<=Q)

agentSet = chooseAgentsToInteract(agent);

for each agentToInteract in agentSet {

// is agentToInteract accepting the agent’s proposal

//for interaction?

if (acceptInteractionProposal(agentToInteract,agent)) {

[ag1_outcome,ag2_outcome,ag1_netbenefit,ag2_netbenefit]

= playGame(agent,agentToInteract);

updateMemory(agent,agentToInteract,

ag1_outcome,ag1_netbenefit,time);

updateMemory(agentToInteract,agent,

ag2_outcome,ag2_netbenefit,time);



160 APPENDIX A. PSEUDO-CODE OF THE MODELS

// if interaction is positive for both agents,

//then exchange memories

if (ag1_outcome>0 and ag2_outcome>0)

exchangeMemories(agent,agentToInteract,time,outcomes);

}

else {

interactionIsRefused(agent,agentToInteract);

}

}

}

// agent chooses a set of agents to interact with (up to Q).

// The set of agent is chosen at random or maximizing the

// expected outcome depending on the exploration

// probability

function chooseAgentsToInteract(agent) {

agentSet = new List();

// we have to calculate the exploration probability. So we

// must know how many agents in agent’s memory are known or

// unknown (K and U set in section 8.1)

unknown=0;

known=0;

for each mem in agent.memory {

if (mem.agent>=0) {

if (mem.time<0) unknown=unknown+1;

else known=known+1;

}

}

// equation 8.2.3

explorationProb = (unknown / (unknown+known))^2.0;

i=0;

do {

if (explorationProb < random()) {

// agent is not exploring,

mem = maximum(agent.memory);

// mem is the memory entry with maximum expected outcome

// (mem.expout) provided that mem.agent is not already
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// in agentSet

agentSet.add(mem.agent);

}

else {

// agent is exploring

// choose one agent at random from agent’s memory.

// Check that mem.agent is not already in agentSet.

mem = random(agent.memory);

agentSet.add(mem.agent);

}

i=i+1;

} while(i<Q);

return agentSet;

}

// the agent must decide whether to accept the proposal

// made by initiatorAgent

function acceptInteractionProposal(agent,initiatorAgent) {

mem=getMemoryEntry(agent,initiatorAgent,time);

if (isNull(mem)) {

if (getCurrentInteractions(agent,time)<C) return true;

else return false;

}

else {

if (mem.expout>=0.0

and getCurrentInteractions(agent,time)<C) return true;

else return false;

}

}

// the agent updates its memory after the interaction

// equation 8.2.5

procedure updateMemory(agent, partner, outcome, netBenefit, time) {

mem=getMemoryEntry(agent,partner);

if (isNull(mem)) {

// the agent did not have partner in its memory

memToR=getLessAttractiveMemEntry(agent,time);

memToR.agent = partner;

memToR.time = time;
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if (netBenefit>=0) memToR.expout = outcome;

else memToR.expout = -outcome;

}

else {

// the agent did have partner in its memory

if (netBenefit>=0) {

// agent cooperated in the interaction with partner

if (mem.time>0) mem.expout=(mem.expout+outcome)/2.0

else mem.expout = outcome;

}

else {

// agent defected in the interaction with partner

mem.expout = -outcome;

}

// update the interaction time, if t>0 means that the agent

// and partner have interacted, otherwise the knowledge

// about partner comes from the memory exchange process

mem.time=time;

}

}

// returns the memory entry from agent’s memory whose

// mem.expout (expected outcome) is minimum in

// absolute value. Provided that mem.time < time

function getLessAttractiveMemEntry(agent,time);

// remove the memory entry memToRemove from agent’s memory

removeMemoryEntry(agent,memToRemove);

// add the memory entry memToAdd to agent’s memory

addMemoryEntry(agent,partner,time,expoutPartner) {

mem = getMemoryEntry(agent,partner);

if (!isNull(mem)) {

// partner was already in agent’s memory

if (mem.time<=0) {

if (mem.time<0) mem.expout=expoutPartner;

else if (mem.time==0)

mem.expout=(mem.expout+expoutPartner)/2.0;

mem.time=0;

}
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}

else {

// partner was not in agent’s memory

memToR = getLessAttractiveMemEntry(agent,time);

if (fabs(memToReplace.expout)<fabs(expoutPartner)) {

// replace the old entry by the new one

memToR.agent = partner;

memToR.expout = expoutPartner;

memToR.time = 0;

}

}

}

// agents exchange information about other agents

procedure exchangeMemories(agent, partner, time) {

if (ME==Explicit) {

memFromAgent = chooseMEExplicit(agent);

memFromPartner = chooseMEExplicit(partner);

}

else {

memFromAgent = chooseMEImplicit(agent,time);

memFromPartner = chooseMEImplicit(partner,time);

}

addMemoryEntry(agent,memFromPartner.agent,time,

memFromPartner.expout);

addMemoryEntry(partner,memFromAgent.agent,time,

memFromAgent.expout);

}

// the agent reduces the expected outcome after

// partner’s rejection to interact

procedure interactionIsRefused(agent,partner) {

mem = getMemoryEntry(agent,partner);

mem.expout = (mem.expout+0.0)/2.0;

}

// return a memory entry whose mem.time is bigger than 0,

// which that at least one interaction between agent and mem.agent

// has occurred. The chosen memory entry is the maximum
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// mem.expout in absolute value. In the case of a clash the

// returned memory entry will be chosen at random among those with

// maximum expected outcome.

function chooseMEExplicit(agent);

// return a memory entry whose mem.time is equal to the current time,

// which means a current interaction of the agent. The memory entry

// is chosen at random

function chooseMEImplicit(agent, time);

// returns the current number of interactions of the agent, which is

// the number of memory entries in its memory with mem.time equal to

// the current time

function getCurrentInteractions(agent,time);

// play the game G

function playGame(agent1, agent2) {

double Gij, Gji, Lij, Lji;

double outcomeAg1, outcomeAg2;

double netBenefitAg1, netBenefitAg2;

Gij = (1.0-agent1.alpha)*(agent2.alpha)*B;

Lij = (1.0-agent2.alpha)*(agent1.alpha)*E;

Gji = (1.0-agent2.alpha)*(agent1.alpha)*B;

Lji = (1.0-agent1.alpha)*(agent2.alpha)*mEffort;

netBenefitAg1 = Gij-Lij;

netBenefitAg2 = Gji-Lji;

if (netBenefitAg1>=0.0 and netBenefitAg2>=0.0) {

// both agents cooperate

outcomeAg1=Gij-Lij;

outcomeAg2=Gji-Lji;

}

else if (netBenefitAg1>=0.0 and netBenefitAg2<0.0) {

// agent2 defects and agent1 cooperates

outcomeAg1=-Lij;

outcomeAg2=Gji;

}
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else if (netBenefitAg1<0.0 and netBenefitAg2>=0.0) {

// agent 1 defects and agent2 cooperates

outcomeAg1=Gij;

outcomeAg2=-Lji;

}

else {

// both agents defect

outcomeAg1=0.0;

outcomeAg2=0.0;

}

return [outcomeAg1,outcomeAg2,netBenefitAg1,netBenefitAg2];

}

// create a random permutation; so agents are executed only once per

// simulation step and they the order is random

function createPermutationOfAgents();

// remove agent from the permutation

procedure removeAgentFromPermutation(agent)

// return when all the agents have been already chosen

function isPermutationEmpty();

// returns the memory entry form agent’s memory

// corresponding to agent2 (agentTo=agent.mem.agent).

// If it does not exist return null

function getMemoryEntry(agent, agentTo);
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