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ABSTRACT 
In this paper, we present a fully distributed and collaborative 
search engine for web pages: Porqpine. This system uses a novel 
query-based model and collaborative filtering techniques in order 
to obtain user-customized results. All knowledge about users and 
profiles is stored in each user node’s application. Overall the 
system is a multi-agent system that runs on the computers of the 
user community. The nodes interact in a peer-to-peer fashion in 
order to create a real distributed search engine where information 
is completely distributed among all the nodes in the network. 
Moreover, the system preserves the privacy of user queries and 
results by maintaining the anonymity of the queries’ consumers 
and results’ producers. The knowledge required by the system to 
work is implicitly caught through the monitoring of users actions, 
not only within the system’s interface but also within one of the 
most popular web browsers. Thus, users are not required to 
explicitly feed knowledge about their interests into the system 
since this process is done automatically. In this manner, users 
obtain the benefits of a personalized search engine just by 
installing the application on their computer. Porqpine does not 
intend to shun completely conventional centralized search engines 
but to complement them by issuing more accurate and 
personalized results. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents, 
Multiagent systems. H.3.1 [Content Analysis and Indexing]: 
Indexing methods. H.3.3 [Information Search and Retrieval]: 
Information filtering, Relevance feedback, Retrieval models, 
Search process, Selection process. H.3.4 [Systems and 
Software]: Distributed systems, Information networks, User 
profiles and alert services. H.3.5 [Online Information Services]: 
Data sharing. C.2.4 [Distributed Systems]: Distributed 
applications 

General Terms 
Algorithms, Management, Performance, Design, 
Experimentation, Security, Human Fctors. 

Keywords 
Search, Search Engine, Distributed, peer-to-peer, p2p, 
Collaborative Filtering, Knowledge Sharing, Knowledge 
Management. 

1. INTRODUCTION 
Almost any web search engine presently in use (Google, 
Altavista, etc.) ignores completely the intentions, interests and 
preferences of their users. A substantial amount of information 

about users could be obtained from users when they perform a 
query or when they receive the results from a query.  Some ways 
for taking advantage of user information have been 
[1,10,16,20,27,30,31] attempted but not much in the area of web 
searching engines. In part this is due to the highly centralized 
nature, at least at a conceptual level, of the indexing tasks of 
search engines. Our proposal attempts to create a highly 
distributed system where each user computer stores a part of the 
web model used for indexing and retrieving web resources in 
response to queries. All users share these partial models that 
globally create a consistent model for the web resource that is 
equivalent to its centralized counterpart. The rationale for the 
system is quite simple: information about web pages and other 
resources is shared in a peer-to-peer way. Although the system is 
not restricted to sharing models of web pages but of any type of 
resource accessible through the web, its most interesting 
application from the point of view of information sharing is the 
ability to share individual web models in order to build a 
distributed repository that, in principle, could complement the 
large centralized repositories built by search engines like Google 
or Altavista. 

Going from a centralized paradigm towards a distributed one, 
brings in several advantages that cannot be exploited earlier. 
Basically, they are related to the fact that information has been 
collected, selected, stored and shared among users according to 
their profiles and interests. The active contributions of users 
present multiple advantages. In effect, the creation of a permanent 
user profile allows filtering search results depending on the user 
interests, introducing a certain degree of personalization in 
search. For example, an advanced Java programmer does not 
expect to obtain, for the same query terms, the same type of 
documents as a novice Java programmer. Moreover, user profiles 
allow automatic query expansion [12, 21,31] by inserting 
information about the user’s interests so that more precise and 
specific results should be expected. If one considers users not 
only as isolated individuals but also as a community then this 
social dimension could be exploited in order to access to the 
expertise of people with similar interests. If two people have 
similar knowledge and interest profiles, for example two 
advanced Java programmers, they would probably find interesting 
the same pages but these pages could be seen as not interesting to 
other no so similar people: novice programmers could find them 
too technical. The social dimension of the community allows 
clustering users according to their interests and expertise and so 
focus on interesting information by reducing the domain of 
interest. 

The usage of a combination of the individual and social 
dimensions of users interests has been proposed for centralized 
and distributed knowledge sharing environments 



[1,16,21,26,27,20,31]. They usually pose two very important 
problems that have not been solved in a satisfactory fashion. On 
the one hand, storage is a problem given the potentially large 
number of users; repositories become intractable both for 
indexing and recovery. On the second hand privacy is a concern, 
since the queries that are issued to the search engine become a 
delicate piece of information; knowing that every action is used to 
build a personal profile, people refrain from using the system and 
so the overall performance degrades, since it depends on people 
collaboration. Our system is based on user information that is 
completely distributed in such a way that these two problems are 
avoided.  

A second advantage is that it uses a model of web pages that is 
not directly based on page contents. Centralized search engines 
work by using an analysis of contents and by calculating 
important words in pages. Our system also uses a model based on 
the most relevant words but these words are not extracted by the 
system but introduced by human users with a high proficiency in 
their expertise domains. Users publish new web resources and 
assign a set of keywords. This can be also automatically inferred 
form other user’s actions: a bookmarking a page can be used to 
create a model for that page. 

The next section describes in more detail all these aspects. Section 
3 discusses the prototype architecture. Section 4 shows the 
application. Section 5 shows experimental results from the 
simulations performed for system testing. Last section draws 
conclusions and discusses further work.  

2. SYSTEM DESCRIPTION 
Porqpine is a fully distributed system; each user is one or 
exceptionally more than one node in the overall network. All 
nodes in the network are identical and their total composition 
results in a distributed search engine in a similar way as other 
peer-to-peer systems are used for file sharing [13,14,17]. The 
difference is in the fact that what is shared here are not files but 
the knowledge that the different users have about web pages. 

2.1 Shared knowledge  
In order to obtain this knowledge the system resorts to different 
information sources that are always related in some way or 
another to the user, be it in an explicit or implicit way. In the first 
case information contributed by the user is the basis; in the second 
one, user actions are analysed to extract some relevant 
information [7,21].  

All the knowledge generated by each user is stored in the 
corresponding user node, i.e., his or her personal computer. In this 
way each user is the proprietor of his or her information. A User 
Agent protects it and is responsible for privacy protection. 
Although the knowledge is stored in a local and distributed 
fashion, it can be recovered through queries against the system. 
Different nodes share knowledge in a peer-to-peer fashion in such 
a way that they build a global knowledge on which local search 
procedures are combined, which results in a global search engine. 
Web pages and other resources are modelled by the keywords that 
were used located them. This mechanism is explained in the 
following. 

2.2 Query-based model 
In order to index and store web pages and resources our system 
uses a methods that is different to the ones used by typical search 

engines. Usually search engines resort to some variation of the 
vector space model [28] to model the content of pages or the 
information associated to other resources or to link structure in 
order to index these pages. These models are known as “content-
based models“ and are quite comprehensive, since they associate 
a series of keywords to each page extracted from the page content 
or from the links that point to the page. The selection of which 
keywords are relevant, i.e., will be used to model the page is done 
by resorting to information retrieval techniques like, for example, 
TFIDF (Term Frequency-Inverse Document Frequency, [28]). All 
these processes are performed by crawlers continuously traversing 
the web, parsing pages and building their corresponding content 
models. Our system, by contrast, uses no crawler, although it 
could be possible that each node used several local agents devoted 
to these tasks. 
Each web page contains many words that end up in the 
corresponding model, however a more accurate web page model 
could be obtained by using the terms appearing in queries that 
recover that page. That is the results obtained by a search engine 
in a given query q can be modelled by using the words that appear 
in query q and not the keywords extracted from the page. 
Although, apparently a great deal of information from each page 
is lost (keywords) more descriptive accuracy is obtained by using 
the terms in the query since a lot of noise is removed from the 
model. Another point that lead us to think that queries’ words 
would be a good descriptor is the fact that   
A query-based model is more compact and only contains words 
that are really significant to people, not just that are ranked high 
by an indexing system. This is the most important advantage of 
this approach, since people use to have a greater knowledge about 
a domain and a better synthesis ability than any classification or 
non-supervised learning method. For example, when a user writes 
in a query “java rmi” obtains a set of pages, the model of each 
page will be updated with the “java” and “rmi”. Any other 
person issuing a query about “java rmi examples” will also obtain 
the same subset of pages. 

 
Figure 1. Query-base model diagram 

People also tend to use the same subset of words very frequently 
[22,33]. Thus, these words could be used to model the web page. 
This system however depends on the existence of a large 
repository of content-based models so that the query-based model 
can be used. These repositories could be, for example, the ones 



from the big search engines like Google and Altavista. By using 
search engines, our system is able to transform content-based 
models into query-based with all their advantages: smaller 
models, more specific, more user-oriented. This dependence could 
be avoided in two different ways. Either the system creates its 
own repository through a distributed crawler (an option we are 
currently studying) or an incentive schema is set up to promote 
that users contribute with web resources to the system.  

2.3 Rating and Collaborative Filtering 
Once models are stored at each node of the peer-to-peer system, 
the next step consists in creating a true search engine for 
recovering the corresponding information. Recovery means not 
only to return results from different nodes but also to incorporate 
user profiles and knowledge in order to get a more powerful, 
personalized rating process. 

Centralized search engines always return the same results for the 
same query independently from users, since they have no 
personalization method. Some systems [21, 31] go one step 
further and introduce some filtering of the results obtained by a 
search engine by using the user’s profile. 

Centralized search engines do not take advantage from the fact 
that each user gives a different assessment for each tuple 
composed by a web page and a query and that each user has a 
profile based on his interests. In fact, maintaining and updating a 
centralized repository with this type of personal information is 
very costly and probably inefficient. That type of information 
storage adapts well to a decentralized peer-to-peer solution, since 
personal profiling information belonging to each user is kept in 
his computer. This is interesting both for economy and privacy 
reasons. 

Each user in the Porqpine systems issues either explicitly by a 
voting mechanism or implicitly through his actions a certain 
rating for each tuple <page,query>. So each node stores the 
query-based model of each page and the corresponding set of 
personal assessments for that page in relation to a given query. 
Each user has a profile that is implicitly built by the system and 
identifies the user in a given role. With all this components it is 
possible to apply a collaborative filtering technique. That is, given 
a user p and query q Porqpine will return pages that have been 
well rated by people similar to p as a result of a query similar to q. 
This pages will be interesting ones for user p since its rating will 
be calculated from opinions of other similar people which (1) 
have a similar knowledge to p ‘s for the same domain and (2) a 
similar analysis ability that is better than the one exhibited by 
automatic methods and (3) have similar interests. Each user with a 
similar profile to a given one will recommend pages that have 
been interesting to him, which in turn could be of interest to 
similar user. This is the core of collaborative filtering systems 
[6,10,20,26,27,31]. 

For example, if user “solso” issues a query about “java db jdbc”, 
the system will return pages that have been well rated by people 
with similar interests in a similar query, for example, “java jdbc”. 
Consequently, for the same query, a user with a very technical 
profile will get more technical pages than user with are more 
general profile. This is equivalent to asking to people similar to us 
which pages are more important for a given topic. This approach 
seems more natural and promising than the present and 
generalized one of asking an oracle for a given topic (query). 
However, collaborative filtering is not without its own problems. 

Typical ones are the “cold-start effect” that keeps the system with 
a low performance until the number of its users reach a critical 
mass and, even then, the problem due to lack of collaboration on 
the part of the existing users. In other words, the systems needs a 
significant amount of data in order to respond and the users have 
to somehow participate in the rating process for the system to 
issue trustworthy ratings. Still, the system can work without 
annoying its users by requesting explicit ratings. In fact it can 
gather information about the user’s interests by observing his 
actions [7,21].   

2.4 Message propagation  
So far, we have only spoken about the information or knowledge 
contained in each node. Nevertheless, this information needs to be 
shared among all the nodes. To do so, the peer-to-peer approach 
has been chosen, each single node is not only an information 
producer or consumer, but also is a router that forwards requests 
and results. Usually peer-to-peer systems forward requests, in 
such a way that, once the information or the file is found, a direct 
communication between the consumer (who queries) and the 
producer (who serves), is established. Our system does not work 
this way. The results are also sent back to the consumer through 
the peer-to-peer network. This is due to the fact that both the 
request and the result do not have information about who was the 
real initiator of the request, or even who answered with results. 
By doing so, anonymity is preserved, as is will be discussed in the 
next subsection. 
In Figure 2 we can see how propagation works. A node i 
generates a query, then node i performs a search in the local 
repository for that query, and at same time the query is forwarded 
to node i’s neighbours, who act in the same manner, search in the 
local repository and propagate the query by becoming themselves 
senders of that query. By doing so, when agent m receives a query 
it will not know who the initial sender was. In fact, node l, who 
sent the request to node m cannot be sure if node i was the real 
initiator or a mere mediator. Only the node that launched a query 
knows that it was the initiator. Once results are found in a local 
repository and sent to the network, the same process happens 
again: nobody can be sure about who the producer was, because 
each node could be a mere mediator. When results arrive to the 
initiator que process finishes, and no node in the network can 
infer nothing for sure about their neighbours.  
With the exception of how results are managed, our system is 
exactly like a conventional peer-to-peer system. There are several 
policies for request propagation in the peer-to-peer literature 
[9,11,13,15,23,29]. Some of them are really simple, such as 
Gnutella [13] with its breadth-first search. Other systems have 
more elaborated policies, based on the knowledge about other 
nodes [9,15,23], that knowledge can be used to improve the 
routing process.  
 



 
Figure 2. Message  propagation 

Other techniques use some kind of knowledge about neighbouring 
nodes in order to route message more efficiently. For example, a 
possible policy is to change the connectivity between nodes by 
getting connected to those nodes that in the past responded well to 
request [9,11,15,23]. Another technique consists in replicating the 
information on several nodes [11]. Finally, other systems that also 
use knowledge about neighbours in order to prevent sending the 
message to nodes that will surely have received the message, this 
amounts to pruning repeated messages. All these systems work 
well but cannot be applied to Porqpine since our goal is to protect 
anonymity as much as possible. So, generating knowledge about 
the contents of a node is forbidden in our approach.  
Our solution could be assimilated to a stochastic breadth-first 
exploration of the neighbours of a node. That is, a message is not 
sent to all neighbours of a node but only to a certain percentage of 
them. In this way the number of messages generated by the 
system is kept low. The risk, of course, is that some nodes may 
not be ever visited. More details are discussed on the section 
dealing with experimentation. 
Moreover, the system creates a “neighbour profile” that 
represents the knowledge contained in that part of the network 
that is reachable through each neighbour but that does not reflect 
the knowledge contained in any individual node. This information 
is used as a routing table for message propagation. 
Choosing and adequate propagation policy is a key factor in the 
success of searching in a peer-to-peer system. This decision 
depends on factors such as the information load in the system. 
That is, if there is little information in the system, what is 
convenient is to perform a depth-first as, for example, Gnutella 
does. If there is a lot of information in the system, then a policy 
that uses some type of routing information is preferable. In this 
way, a depth-first strategy is avoided, as is the generation of a 
huge amount of responses. 
In a distributed search engine, as our system is, the information 
load depends on the number of models that are stored in each 

node and also on the features of the performed query that can be 
quite frequent or rare. So, the exploration method is very 
dynamic. Stochasticity depends on the results obtained so far. As 
the number of results increases the search becomes more focused. 
In fact, the implemented policy is a hybrid one since at the 
beginning when there is little information in the system, search is 
quite blind and messages are propagated to a set of neighbours 
randomly chosen; as the systems builds better profiles, then these 
profiles influence set of chosen neighbours. In this way, 
propagation adapts to the volume of results. As the number of 
results increase the life of a query decreases. 

2.5 Privacy and anonimity 
 
The information and the knowledge that the system contains 
(queries, web page models, ratings, profiles, etc.) is a very critical 
one from the point of view of privacy. Accessing to this 
information could lead to the creation of personal profile for 
illegitimate used by third parties. In fact, in the normal operation 
of traditional centralized search engines users are subject to the 
same risks. If each user has static IP, then the search engine can 
associate that IP to the queries issued by the user. It is to be 
supposed that centralized search engines are not going to use 
illegally this information since they risk losing all their reputation 
as trustworthy systems. 
In a peer-to-peer system, each node in the network routs queries 
and results. So, a malicious node could use the information that 
flows through it for non-authorized aims [25]. In peer-to-peer 
systems, direct encryption of data only protects from sniffers 
spying the communication between nodes in the system. It does 
not prevent malicious use by a node, since this node can decode 
the message in order to propagate it. One possibility to prevent 
this could be to use techniques that use matching of encrypted 
information pieces [2], however they are not powerful enough to 
be used in that kind of system.  
Another possible technique to ensure privacy is the one used by 
Freenet [11] which is based in the replication and distribution of 
information across different network nodes in such a way that 
information contained in a node does not to be owned by it. This 
system also helps in improving information recovery since it 
applies an aggressive cache policy. Up to now we have not resort 
to this technique because we think that is very important to keep 
all information about a user in his own node. 
Our system uses a very simple technique, which is based in the 
partial vision that each node has of the whole system. A node 
only knows about its neighbours and it can only send or propagate 
a request or a result to or from its neighbouring nodes.  
In the request message there is no information about the real 
originator of the message or of the steps performed by the 
message, i.e., TTL. The message contains no information that 
allows identification of the request or results originator. As it has 
been already commented in section 2.4, this method is slightly 
slower since results that usually are directly transferred between 
the producing and consuming nodes now has to unwind the path 
between intermediate nodes. This disadvantage prevents nodes 
from knowing which is the requesting node or the one generating 
results. Thus, a network of “blind proxies” [5] is used to mask the 
real producers and consumers.  



3. NODE ARCHITECTURE 
Porqpine is composed by an undetermined number of nodes, each 
one is an application, more concretely, an application based on a  
multi-agent system. Taken together all nodes, communicating in a 
peer-to-peer fashion, become the Porqpine system. In Figure 3 
there is a sketch of a node’s architecture. 

 
Figure 3. Porqpine’s node architecture 

The user can interact with the system in two different ways: One 
is using the Porqpine’s Graphical User Interface, from now on 
GUI. The other one is through the usual web browser that is 
monitored by the Tracking Agency. It is worth remarking that the 
system is always running in background, although the user is not 
using the GUI. Each agent, or agency, has a set of tasks to 
accomplish, which are going to be outlined in the following. 

Tracking Agency: monitors the user actions that take place within 
his web browser. These actions are basically: 1) performing a 
search on a Conventional Search Engine (CSE), such as Google or 
Altavista, and 2) navigating through the obtained results and the 
subsequent logical actions, such as following a link, adding 
results as a bookmark, printing a page, saving it to disk, and so 
on. From these actions the system is able to catch information 
about the user behaviour avoiding the usage of the system’s GUI. 
This agency is a set of different agents, since there are several 
CSEs to be monitored. 

Profiler Agent: this agent gathers the information harvested by the 
Tracking Agent and the User Agent about the user in order to 
create knowledge about him. This knowledge is the user’s profile, 
which is calculated by integrating the performed queries, as well 
as the satisfaction issued by the user for a given result and query. 
This satisfaction is evaluated implicitly [7,21] from the 
information about the user’s action obtained by the Tracking 
Agency and the User Agent.  

Interface Agent: is responsible for connecting the GUI with the 
node’s agency. This agent handles all the actions done by the user 
within the GUI. This is the only agent that is not running 
permanently, it is awakened only when the user interacts with the 
GUI. 

User Agent: is the agent that encapsulates all the user’s 
information and other ones, such as profile, queries, results, 
results’ ratings, etc. This agent, who is the connector between 
every two nodes, manages all the privacy rules.  

Search Agent: is the agent that searches within the local 
repository, under the command of the User Agent. It is also 
responsible for handling messages, both requests and responses, 
keeping propagation policies, even though the information 
encapsulated by the User Agent is also in charge of these aspects. 
There is a narrow collaboration between these two agents.  

Apart from the agents, there is also Porqpine GUI, which is the 
front-end for the human user as well as the knowledge repository, 
which stores mostly the web pages query-based model. 
Communication between Porqpine nodes is always performed 
from the Search Agent to the User Agent. Thus, all the 
information that flows into a node is managed wisely by the 
corresponding User Agent.  After this brief description of the 
architecture se will outline how the implementation of a 
Porqpine’s node follows the described architecture.  

4. APPLICATION 
Even though the system is not finished, the most important 
functionalities are already operative. Some details, such as the 
GUI or the connectivity patterns, require an extra effort before the 
test with real users, which is almost ready to ship.  Hopefully a 
first public version will be available on our website 
http://www.porqpine.com before the end of the present year.  

 
Figure 5. Porqpine’s GUI snapshot 

In Figure 5 a snapshot of Porqpine’s GUI is shown. The 
application is always running in background, searching in the 
local knowledge repository, and routing messages. In Figure 6 
some results of the system can be seen. Figure 6-1 shows the 
results for user x’s query about “free interactive assistant” using 
the system’s GUI. These results are not from the system since 
there was no match for that query in our system, the results come 
from a metasearch process against a widely known SCE, more 
concretely, Google. Meanwhile, in Figure 6-2 user y performs the 



query “free computer buddy” to Google using his habitual web 
browser, that is Microsoft Explorer. In both cases the system is 
registering implicitly the obtained information. After that, the 
system is already able to answer to user z’s query “computer 
assistant”, the results of such query can be seen in Figure 6-3.  It 
can be seen that user z has taken profit of the information 
introduced by the other two users. However, the other two users 
were no bothered by asking them to introduce anything. All the 
process was done automatically by the system, without any user 
direct intervention. From now on, the system will be able to 
answer queries about that topic. 

 
Figure 6. Porqpine’s results example 

The application that runs in each node is written in C++. Right 
now it only runs under Microsoft Windows environment, the OS 
and the web-browser. The executable is smaller than 200Kb, the 
allocation of resources, such as bandwidth and disk space, are 
customizable. The information repository, where the query-based 
models are stored in, is an efficient indexed file system developed 
by ourselves, in order to obtain efficiency and to avoid that the 
user have a third-party DB Engine installed. 

5. EXPERIMENTS 
Let us present and discuss the experiments that will confirm the 
feasibility of the system and its performance.  

The best experiment would be with real users, however, this test 
is not possible at present time. We are on negotiation with our 
University Managing Staff in order to deploy the system in the 
Campus computers. Hopefully, the real deployment will be 
possible very soon. In the meantime, we have developed a 
framework to run simulation in order to test the behaviours of our 
system. The experiments are lead to answer the three more 
important questions about the systems feasibility and 
performance. The questions to find out are the following: 1) 
When is the system able to reply by using its own results without 
the mediation of the SCSE? 2) What quality the results issued by 
our system have, in terms of user satisfaction, compared with the 

results obtained from the SCSE? And finally, 3) what amount of 
messages are generated within the peer-to-peer network to 
operate, in other words, which is the network traffic generated by 
queries and results? 

5.1 Experimental Framework 
To carry out the simulations the following framework was 
deployed. This framework contains information of web pages, 
queries and users created following models that we will explain 
after. The framework also contains two cores of a search engine; 
the distributed one is our system. The other one is centralized, 
which acts in a similar way than a real CSE, from now on it will 
be called SCSE, simulated CSE. Each search engine core has only 
access to its allowed information. Thus, our system cannot access 
to the content-based models, and the SCSE cannot access neither 
to the query-based models nor the users’ models. 
The words in the framework are represented by integers. The 
corpus, that is the set of all the possible words, is a circular vector 
of size M. Proximity between words is equivalent to saying that 
come from the same domain, that is, their meaning refers to the 
same or similar topic. Hence, if we take a correlative set of words 
they will be about the same topic. They are words that usually co-
occur in that domain. We are aware that is not always true 
because words can have different meanings. However, the loss of 
quality that one can incur by not having semantic consideration 
would bring a framework even less realistic, since there would be 
no way to create pages or queries about a given topic. If 
neighbourhood is not taken into account, pages can be created by 
using words randomly among all possible words in the language. 
But in reality, pages do have a topic. The number of words 
relevant to this topic is always smaller than the total number of 
words of the language. Each word wk has a probability of being 
chosen that follows a Zipf distribution [28], that is, a power-law 
distribution  p(wk) ∝ k-2 . The occurrence probability does not 
depend on the position of the word in the corpus. Hence, the 
occurrence probability of words contained in a set of correlative 
words, which represent a given domain, also follows a Zipf 
distribution. This distribution is found to hold for real data. 
Intuitively it expresses the fact that a lot of words appear rarely 
and some words appear very frequently.  
To simulate the pages, a set of P web pages’ models was created. 
Each page contained between 10 to 100 words; the number of 
words in a page follows a uniform distribution. Conversely, words 
that are chosen to appear in a page follow a power-law 
distribution over a correlative subset of  2x1.96xM/100 words.  
This corresponds to the interval  [-1.96xM/100..1.96xM/100] if 
we consider that the initial word, which is the centre of the 
correlative subset, is represented by 0. Therefore, by choosing 
words in this way we ensure that words occurring on a page are 
topic related, since all the subset contains words that usually co-
occur. Somehow, a model with semantic coherence is obtained by 
this process. The more we reduce the corpus size, the more 
specific the topic composed by the correlative subset of words is. 
In order to simulate queries we used the same approach, but the 
correlative subset was smaller since queries are usually more 
specific than web pages contents. Size was M/1000. The number 
of words in a query lies in the interval [1..5].   
Each page also have an objective and subjective rating, 
respectively obj_rat and subj_rat. An objective rating is a real 
number in the interval [0..1], and is randomly assigned. This 
value represents the quality of a page from the objective point of 



view, and it is usually calculated by the CSE by analysing the 
links’ contents and topology [18,24]. This value would be used by 
the SCSE to rank the results, as a real CSE does. Conversely, the 
subjective rating is not present in the CSE, since they usually do 
not take into account user preferences. The subjective rating is a 
vector of G reals in the interval [-1..1] randomly assigned. Each 
element of this vector is the page score for a undetermined 
subjective attribute, such as the presence of videos in the page or 
the lack of advertisements. What the attributes stand for is 
completely irrelevant; they are only used to evaluate the user 
satisfaction in the framework.  
To simulate the users in the framework a set of U users has been 
created. Each user has a knowledge profile, which is updated with 
the queries that he issues. This profile, based on a vector space 
model, represents the knowledge of the user as a representation of 
the queries he created. In a similar fashion as it is done with 
pages, the user do not use all the words in the corpus. An 
individual user uses only 2x1.96xM/100 words from the whole 
corpus.  Users, which are nodes in the peer-to-peer network, have 
a set of neighbours. For each of its neighbour, a user maintains a 
neighbour profile updated from the results received from it. This 
profile, which acts as a routing table, is useful for the message 
propagation policy, as mentioned in section 2.4. In the framework 
we have used a graph based on the Klemm-Eguíluz model [19] to 
interconnect the nodes. This model generates a graph, whose 
topology follows some of the most characteristic properties of 
complex networks. For example, the in-degree distribution 
follows a power-law and the average path length is small and the 
clustering coefficient is high. These topologies, typical in complex 
networks, usually arise in unsupervised dynamic systems like the 
Web or a peer-to-peer system [3,4,32]. This is the reason why we 
have chosen this model to generate a network with realistic 
topology. A simulated user, also has subjective preferences, 
subj_pref, a vector of G reals in the interval [-1..1] that is 
initialised randomly. Thus, the subjective satisfaction, subj_satisf, 
between a user and a query is calculated as follows: 

2/)1__(),(_ +•=
→→

ij upji prefsubjratsubjpusatisfsubj  

This subjective satisfaction value, in the [0..1] interval, is a score 
of how much the user likes a page. The vectors subj_rat and 
subj_pref, are never used by the Porqpine system, since they are 
impossible to build implicitly. It is quite difficult to know if a 
page is interesting for a user, knowing why he likes it would 
require explicit knowledge about the page and the user that are 
not available. These vectors are only used in the framework to 
calculate the subj_satif value. This value is used either in the 
system or in the framework in order to rank the results. In the real 
system subj_satif is calculated by the Profile Agent with 
information about the user’s actions, harvested by the User Agent 
and the Tracking Agency. The satisfaction of a user ui, for a given 
page pj, is a combination of the subjective satisfaction and the 
objective quality of that page.  
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This is the measure we are going to use to test which system 
retrieves better results. α is set up at 0.5. So, we give the same 
importance to the single user’s opinion and to the objective rating 
that is calculated by CSE’s as a global opinion.  

The SCSE returns a maximum of 20 results for each query. The 
ranking of results in the SCSE is done by means of Equation 3.  

jipji pqratobjpqmatch
j

∩+= _),(  

The match between a query and a page depends on two factors: 
the objective rating of the page, and how many words they have 
in common. 

Eq. 3

Each user of our framework returns a maximum of 20 results, 
however the user who started the query could receive more than 
20 results coming form different users. Ranking is trickier than 
the ranking done by SCSEs since our system takes more factors 
into account. The similarity between two queries is calculated 
with Equation 4. Only those queries whose similarity is higher 
than a given threshold are taken into account, in the framework 
the threshold used is 2/3. 
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Once two very similar queries have been found, user uj ranks each 
one of the results, which are pages stored in his local repository, 
as follows.  
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 Eq. 5

Each user uj knows partially the profile of the requester, since it 
comes with the query request. Not all the profile is added for 
security reasons. Then the user who has a similar query stored in 
his local repository will infer the user ui satisfaction for each 
result uj  has. This inferred satisfaction is calculated as a product 
of the satisfaction of the owner of the result with that result and 
the similarity between both users. In other words, if pm, was liked 
by uj, and the profiles of ui and uj are similar, it is likely that the 
same page pm will satisfy user ui. This is how collaborative 
filtering works. The similarity between two users is calculated 
from the number of common words they have in their profiles as 
can be seen in Equation 6. The user’s profile is a vector space 
model without TFIDF in the framework, and with it in the real 
system. 

Eq. 1Eq. 1
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5.2 Results 
Once the framework has been presented, let us introduce some of 
the experiments that were carried out.  

The corpus size M was set to 50x103. The number of users U was 
set to 10x103, and the number of pages P was set to 100x103. The 
number of queries presented to the system was 120x103. The 
profiles had a length of 100. The graph was set up with 
parameters m=10 and a=4 [19]. The simulation was carried out as 
follows: at each step a query was generated by a randomly chosen 
user, and submitted to the system. The first one hundred queries 
of every ten thousand were used to build the statistics.  

Eq. 2
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In Figure 7 we can observe how the system learnt to reply new 
queries by itself. After seeing 20x103 queries, it was able to reply 
between 70% and the 85% of the new queries. However, once the 
system reached that stage it seemed to stabilize. That fact is 
perfectly coherent with the idea presented in [22,33]. There are a 
lot of queries that are very frequently repeated, and even more 
queries quite related among themselves. However, there are also 
some very infrequent queries that cannot be matched with any 
other previous ones. Then the real system will act as a 
metasearcher by searching in a centralized search engine, which 
have a wide content-based model repository. 

The learning capabilities of the system, that is, the capacity of 
replying to new queries from those handled before, has been 
shown.  Therefore, it might be concluded that a system based on 
distributed repositories of query-based models is able to reply a 
high percentage of queries. Nevertheless, retrieving information is 
not enough. The quality of the retrieved pages, i.e. the results is 
also important. We used the satisfaction between the tuple <user, 
result>, that is Equation 2, to evaluate the quality of the obtained 
results. 
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Throughout this paper we have described the Porqpine system, 
which is a multi-agent system from which a collaborative and 
truly distributed search engine. The main features of the presented 
system are: 1) The introduction and usage of a novel model for 
web pages based on query terms instead on the content or link 
structure of a page. 2) The integration of the users’ subjective 
ratings, registered implicitly by the system, in order to filter and 
rank the results in a collaborative fashion. 3) The avoidance of a 
central repository, which might be replaced by thousands of 

Figure 8. Satisfaction with Obtained Results 

Figure 8 shows how the results issued by our systems scored 
better than those issued by a SCSE once our system had managed 
more than 10x103 queries. The error bars, that represent the 
standard deviation of the satisfaction, do not overlap significantly. 
So, the differences in the satisfaction values are quite relevant. 
Hence, we can conclude that the satisfaction with the results 
issued by our system is higher. This is due to the collaborative 
filtering approach, with which the system is able to yield 
personalized results, against the general results harvested by the 
SCSE. Such personalized results are more suited to the requester 
preferences. Depending on user preferences, the system will come 
up with a different set of results. Clearly, this fact also happened 
in the results issued by our system and the SCSE. The common 
results from both approaches amounted in mean to 47.62% of the 
whole number of results, with a standard deviation of 33.83.  

So far, thanks to the simulations on the proposed framework, we 
have shown two very important points: 1) the system is able to 
reply by itself the 70-85% of queries, after handling 20x103 
queries, and 2) the results issued by our system are more 
satisfying than those issued by a simulated conventional search 
engine.  

To conclude the experiments, we would like to make some 
comments on the traffic of messages generated by the searching 
process. As we mentioned in section 2.4, there are several 
propagation policies in the literature. However, the scarce 
knowledge that a single node has about the whole network 
prevents us from using most of the techniques proposed by the 
peer-to-peer community to reduce message traffic. On the other 
hand, this limitation becomes an advantage when the anonymity 
of the producers-consumers of queries and results is required. We 
decided to trade efficiency for anonymity.  

The size of the system’s graph, i.e. the number of edges, is close 
to 200x103. So, a naïve approach such as a breed-first search, as 
Gnutella [13] suggested, is absolutely out of question. Since the 
number of requests for a simple query would be close to the size 
of the graph, this would lead quickly to the collapse of the system. 
The stochastic approach, introduced in section 2.4, combined with 
the routing information given by the neighbour profiles performs 
very well for reducing the amount of requests. Using this 
propagation policy in simulations up to 300x103 queries resulted 
in the following outcomes: the average number of requests was 
37384, with a σ of 3908.2. The average number of responses was 
116.06, with a σ of 200.32. And, the average percentage of 
retrieving, which is the ratio between results retrieved versus 
results available, was 0.9322 with a  σ of 0.1127. Thus, 
comparing our policy with a breadth-first search it is clear that we 
have reduced the 80% of the messages by losing a 6.78% of the 
available results. 

6. CONCLUSIONS AND FURTHER 
RESEARCH 



personal repositories spreaded among the users’ computers. All 
these advantages are only possible because the information is 
distributed among all the nodes of the network, which 
communicate with each other in a peer-to-peer fashion. The 
introduction of the query-based model, or the subjective rating is 
possible because personal information and knowledge is gathered, 
maintained and managed by each single user. 
Our system is very concerned about the privacy issues, which are 
very important when personal information is managed. (Such as 
queries, web pages visited, web pages, etc). Privacy in our system 
lies in the anonymity of its members, either by using nicknames 
or, more important for us, by the impossibility of being aware 
who the real consumer-producer of queries and results is.  
As it has been shown in section 5, experimental results look 
promising. The results of the simulations encourage us to keep 
working on that system, since its feasibility seems to be shown. It 
is worth remarking that the system uses information coming from 
conventional centralized search engines with a content-based 
repository, so the system is not aimed to replace SCEs, but to 
complement them. It does so by adding a user-personalization 
layer and using collaborative filtering techniques, which bring our 
system closer to being a recommender of web pages than a 
‘simple’ search engine. Porqpine is not able to reply to all the 
queries with its own information, but it does in a high percentage 
of cases. Nevertheless, when results are available within the 
system, they are of a higher quality, that is, the satisfaction the 
users for the obtained results for a given query is higher. 
On the other hand, the system is not free from drawbacks. The 
most important one is the fact that it relies on the help of SCEs. 
Implementing a distributed crawling component in the system, as 
mentioned in section 2.2, might be a way to avoid this 
dependence. Another drawback is the response time in 
comparison to SCE’s response time. This slowness is because of 
distribution of the information repositories and the peer-to-peer 
search. However, thanks to the propagation policies, mentioned in 
section 2.4, this waiting time can be reduced considerably. 
Anyway, never will the system reply so fast as a SCEs will.  
As future research there are several open. The tasks which we are 
going to focus on are: 1) Improving knowledge acquisition from 
the monitoring of users’ actions, in order to evaluate the 
satisfaction of users implicitly [7,21]. 2) Studying different 
network topologies, such as power-law, random or regular, to be 
applied as a connectivity pattern between nodes. The ultimate 
goal is to find a topology that maximizes a function of several 
factors: the average path-length, the clustering coefficient and the 
resilience against random failures or attacks [3,4,7,32]. This topic 
has not been introduced throughout the paper, but is has a vital 
importance for improving the propagation of information 
throughout the network, its tolerance to random failures and its 
refractiveness to directed attacks. 
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