
Porqpine: A Peer-to-Peer Search Engine
Josep M. Pujol

Technical University of Catalonia
 C/Jordi Girona Salgado 1-3, C5-221

08034 Barcelona, Spain
+344017989

jmpujol@lsi.upc.es

Ramon Sangüesa
Technical University of Catalonia
 C/Jordi Girona Salgado 1-3, C6

08034 Barcelona, Spain
+3493405640

sanguesa@lsi.upc.es

Juanjo Bermúdez
Technical University of Catalonia
 C/Jordi Girona Salgado 1-3, C6

08034 Barcelona, Spain
+344015640

bermudez@lsi.upc.es

ABSTRACT
In this paper, we present a fully distributed and collaborative
search engine for web pages: Porqpine. This system uses a novel
query-based model and collaborative filtering techniques in order
to obtain user-customized results. All knowledge about users and
profiles is stored in each user node’s application. Overall the
system is a multi-agent system that runs on the computers of the
user community. The nodes interact in a peer-to-peer fashion in
order to create a real distributed search engine where information
is completely distributed among all the nodes in the network.
Moreover, the system preserves the privacy of user queries and
results by maintaining the anonymity of the queries’ consumers
and results’ producers. The knowledge required by the system to
work is implicitly caught through the monitoring of users actions,
not only within the system’s interface but also within one of the
most popular web browsers. Thus, users are not required to
explicitly feed knowledge about their interests into the system
since this process is done automatically. In this manner, users
obtain the benefits of a personalized search engine just by
installing the application on their computer. Porqpine does not
intend to shun completely conventional centralized search engines
but to complement them by issuing more accurate and
personalized results.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents,
Multiagent systems. H.3.1 [Content Analysis and Indexing]:
Indexing methods. H.3.3 [Information Search and Retrieval]:
Information filtering, Relevance feedback, Retrieval models,
Search process, Selection process. H.3.4 [Systems and
Software]: Distributed systems, Information networks, User
profiles and alert services. H.3.5 [Online Information Services]:
Data sharing. C.2.4 [Distributed Systems]: Distributed
applications

General Terms
Algorithms, Management, Performance, Design,
Experimentation, Security, Human Fctors.

Keywords
Search, Search Engine, Distributed, peer-to-peer, p2p,
Collaborative Filtering, Knowledge Sharing, Knowledge
Management.

1. INTRODUCTION
Almost any web search engine presently in use (Google,
Altavista, etc.) ignores completely the intentions, interests and
preferences of their users. A substantial amount of information

about users could be obtained from users when they perform a
query or when they receive the results from a query. Some ways
for taking advantage of user information have been
[1,10,16,20,27,30,31] attempted but not much in the area of web
searching engines. In part this is due to the highly centralized
nature, at least at a conceptual level, of the indexing tasks of
search engines. Our proposal attempts to create a highly
distributed system where each user computer stores a part of the
web model used for indexing and retrieving web resources in
response to queries. All users share these partial models that
globally create a consistent model for the web resource that is
equivalent to its centralized counterpart. The rationale for the
system is quite simple: information about web pages and other
resources is shared in a peer-to-peer way. Although the system is
not restricted to sharing models of web pages but of any type of
resource accessible through the web, its most interesting
application from the point of view of information sharing is the
ability to share individual web models in order to build a
distributed repository that, in principle, could complement the
large centralized repositories built by search engines like Google
or Altavista.

Going from a centralized paradigm towards a distributed one,
brings in several advantages that cannot be exploited earlier.
Basically, they are related to the fact that information has been
collected, selected, stored and shared among users according to
their profiles and interests. The active contributions of users
present multiple advantages. In effect, the creation of a permanent
user profile allows filtering search results depending on the user
interests, introducing a certain degree of personalization in
search. For example, an advanced Java programmer does not
expect to obtain, for the same query terms, the same type of
documents as a novice Java programmer. Moreover, user profiles
allow automatic query expansion [12, 21,31] by inserting
information about the user’s interests so that more precise and
specific results should be expected. If one considers users not
only as isolated individuals but also as a community then this
social dimension could be exploited in order to access to the
expertise of people with similar interests. If two people have
similar knowledge and interest profiles, for example two
advanced Java programmers, they would probably find interesting
the same pages but these pages could be seen as not interesting to
other no so similar people: novice programmers could find them
too technical. The social dimension of the community allows
clustering users according to their interests and expertise and so
focus on interesting information by reducing the domain of
interest.

The usage of a combination of the individual and social
dimensions of users interests has been proposed for centralized
and distributed knowledge sharing environments

[1,16,21,26,27,20,31]. They usually pose two very important
problems that have not been solved in a satisfactory fashion. On
the one hand, storage is a problem given the potentially large
number of users; repositories become intractable both for
indexing and recovery. On the second hand privacy is a concern,
since the queries that are issued to the search engine become a
delicate piece of information; knowing that every action is used to
build a personal profile, people refrain from using the system and
so the overall performance degrades, since it depends on people
collaboration. Our system is based on user information that is
completely distributed in such a way that these two problems are
avoided.

A second advantage is that it uses a model of web pages that is
not directly based on page contents. Centralized search engines
work by using an analysis of contents and by calculating
important words in pages. Our system also uses a model based on
the most relevant words but these words are not extracted by the
system but introduced by human users with a high proficiency in
their expertise domains. Users publish new web resources and
assign a set of keywords. This can be also automatically inferred
form other user’s actions: a bookmarking a page can be used to
create a model for that page.

The next section describes in more detail all these aspects. Section
3 discusses the prototype architecture. Section 4 shows the
application. Section 5 shows experimental results from the
simulations performed for system testing. Last section draws
conclusions and discusses further work.

2. SYSTEM DESCRIPTION
Porqpine is a fully distributed system; each user is one or
exceptionally more than one node in the overall network. All
nodes in the network are identical and their total composition
results in a distributed search engine in a similar way as other
peer-to-peer systems are used for file sharing [13,14,17]. The
difference is in the fact that what is shared here are not files but
the knowledge that the different users have about web pages.

2.1 Shared knowledge
In order to obtain this knowledge the system resorts to different
information sources that are always related in some way or
another to the user, be it in an explicit or implicit way. In the first
case information contributed by the user is the basis; in the second
one, user actions are analysed to extract some relevant
information [7,21].

All the knowledge generated by each user is stored in the
corresponding user node, i.e., his or her personal computer. In this
way each user is the proprietor of his or her information. A User
Agent protects it and is responsible for privacy protection.
Although the knowledge is stored in a local and distributed
fashion, it can be recovered through queries against the system.
Different nodes share knowledge in a peer-to-peer fashion in such
a way that they build a global knowledge on which local search
procedures are combined, which results in a global search engine.
Web pages and other resources are modelled by the keywords that
were used located them. This mechanism is explained in the
following.

2.2 Query-based model
In order to index and store web pages and resources our system
uses a methods that is different to the ones used by typical search

engines. Usually search engines resort to some variation of the
vector space model [28] to model the content of pages or the
information associated to other resources or to link structure in
order to index these pages. These models are known as “content-
based models“ and are quite comprehensive, since they associate
a series of keywords to each page extracted from the page content
or from the links that point to the page. The selection of which
keywords are relevant, i.e., will be used to model the page is done
by resorting to information retrieval techniques like, for example,
TFIDF (Term Frequency-Inverse Document Frequency, [28]). All
these processes are performed by crawlers continuously traversing
the web, parsing pages and building their corresponding content
models. Our system, by contrast, uses no crawler, although it
could be possible that each node used several local agents devoted
to these tasks.
Each web page contains many words that end up in the
corresponding model, however a more accurate web page model
could be obtained by using the terms appearing in queries that
recover that page. That is the results obtained by a search engine
in a given query q can be modelled by using the words that appear
in query q and not the keywords extracted from the page.
Although, apparently a great deal of information from each page
is lost (keywords) more descriptive accuracy is obtained by using
the terms in the query since a lot of noise is removed from the
model. Another point that lead us to think that queries’ words
would be a good descriptor is the fact that
A query-based model is more compact and only contains words
that are really significant to people, not just that are ranked high
by an indexing system. This is the most important advantage of
this approach, since people use to have a greater knowledge about
a domain and a better synthesis ability than any classification or
non-supervised learning method. For example, when a user writes
in a query “java rmi” obtains a set of pages, the model of each
page will be updated with the “java” and “rmi”. Any other
person issuing a query about “java rmi examples” will also obtain
the same subset of pages.

Figure 1. Query-base model diagram

People also tend to use the same subset of words very frequently
[22,33]. Thus, these words could be used to model the web page.
This system however depends on the existence of a large
repository of content-based models so that the query-based model
can be used. These repositories could be, for example, the ones

from the big search engines like Google and Altavista. By using
search engines, our system is able to transform content-based
models into query-based with all their advantages: smaller
models, more specific, more user-oriented. This dependence could
be avoided in two different ways. Either the system creates its
own repository through a distributed crawler (an option we are
currently studying) or an incentive schema is set up to promote
that users contribute with web resources to the system.

2.3 Rating and Collaborative Filtering
Once models are stored at each node of the peer-to-peer system,
the next step consists in creating a true search engine for
recovering the corresponding information. Recovery means not
only to return results from different nodes but also to incorporate
user profiles and knowledge in order to get a more powerful,
personalized rating process.

Centralized search engines always return the same results for the
same query independently from users, since they have no
personalization method. Some systems [21, 31] go one step
further and introduce some filtering of the results obtained by a
search engine by using the user’s profile.

Centralized search engines do not take advantage from the fact
that each user gives a different assessment for each tuple
composed by a web page and a query and that each user has a
profile based on his interests. In fact, maintaining and updating a
centralized repository with this type of personal information is
very costly and probably inefficient. That type of information
storage adapts well to a decentralized peer-to-peer solution, since
personal profiling information belonging to each user is kept in
his computer. This is interesting both for economy and privacy
reasons.

Each user in the Porqpine systems issues either explicitly by a
voting mechanism or implicitly through his actions a certain
rating for each tuple <page,query>. So each node stores the
query-based model of each page and the corresponding set of
personal assessments for that page in relation to a given query.
Each user has a profile that is implicitly built by the system and
identifies the user in a given role. With all this components it is
possible to apply a collaborative filtering technique. That is, given
a user p and query q Porqpine will return pages that have been
well rated by people similar to p as a result of a query similar to q.
This pages will be interesting ones for user p since its rating will
be calculated from opinions of other similar people which (1)
have a similar knowledge to p ‘s for the same domain and (2) a
similar analysis ability that is better than the one exhibited by
automatic methods and (3) have similar interests. Each user with a
similar profile to a given one will recommend pages that have
been interesting to him, which in turn could be of interest to
similar user. This is the core of collaborative filtering systems
[6,10,20,26,27,31].

For example, if user “solso” issues a query about “java db jdbc”,
the system will return pages that have been well rated by people
with similar interests in a similar query, for example, “java jdbc”.
Consequently, for the same query, a user with a very technical
profile will get more technical pages than user with are more
general profile. This is equivalent to asking to people similar to us
which pages are more important for a given topic. This approach
seems more natural and promising than the present and
generalized one of asking an oracle for a given topic (query).
However, collaborative filtering is not without its own problems.

Typical ones are the “cold-start effect” that keeps the system with
a low performance until the number of its users reach a critical
mass and, even then, the problem due to lack of collaboration on
the part of the existing users. In other words, the systems needs a
significant amount of data in order to respond and the users have
to somehow participate in the rating process for the system to
issue trustworthy ratings. Still, the system can work without
annoying its users by requesting explicit ratings. In fact it can
gather information about the user’s interests by observing his
actions [7,21].

2.4 Message propagation
So far, we have only spoken about the information or knowledge
contained in each node. Nevertheless, this information needs to be
shared among all the nodes. To do so, the peer-to-peer approach
has been chosen, each single node is not only an information
producer or consumer, but also is a router that forwards requests
and results. Usually peer-to-peer systems forward requests, in
such a way that, once the information or the file is found, a direct
communication between the consumer (who queries) and the
producer (who serves), is established. Our system does not work
this way. The results are also sent back to the consumer through
the peer-to-peer network. This is due to the fact that both the
request and the result do not have information about who was the
real initiator of the request, or even who answered with results.
By doing so, anonymity is preserved, as is will be discussed in the
next subsection.
In Figure 2 we can see how propagation works. A node i
generates a query, then node i performs a search in the local
repository for that query, and at same time the query is forwarded
to node i’s neighbours, who act in the same manner, search in the
local repository and propagate the query by becoming themselves
senders of that query. By doing so, when agent m receives a query
it will not know who the initial sender was. In fact, node l, who
sent the request to node m cannot be sure if node i was the real
initiator or a mere mediator. Only the node that launched a query
knows that it was the initiator. Once results are found in a local
repository and sent to the network, the same process happens
again: nobody can be sure about who the producer was, because
each node could be a mere mediator. When results arrive to the
initiator que process finishes, and no node in the network can
infer nothing for sure about their neighbours.
With the exception of how results are managed, our system is
exactly like a conventional peer-to-peer system. There are several
policies for request propagation in the peer-to-peer literature
[9,11,13,15,23,29]. Some of them are really simple, such as
Gnutella [13] with its breadth-first search. Other systems have
more elaborated policies, based on the knowledge about other
nodes [9,15,23], that knowledge can be used to improve the
routing process.

Figure 2. Message propagation

Other techniques use some kind of knowledge about neighbouring
nodes in order to route message more efficiently. For example, a
possible policy is to change the connectivity between nodes by
getting connected to those nodes that in the past responded well to
request [9,11,15,23]. Another technique consists in replicating the
information on several nodes [11]. Finally, other systems that also
use knowledge about neighbours in order to prevent sending the
message to nodes that will surely have received the message, this
amounts to pruning repeated messages. All these systems work
well but cannot be applied to Porqpine since our goal is to protect
anonymity as much as possible. So, generating knowledge about
the contents of a node is forbidden in our approach.
Our solution could be assimilated to a stochastic breadth-first
exploration of the neighbours of a node. That is, a message is not
sent to all neighbours of a node but only to a certain percentage of
them. In this way the number of messages generated by the
system is kept low. The risk, of course, is that some nodes may
not be ever visited. More details are discussed on the section
dealing with experimentation.
Moreover, the system creates a “neighbour profile” that
represents the knowledge contained in that part of the network
that is reachable through each neighbour but that does not reflect
the knowledge contained in any individual node. This information
is used as a routing table for message propagation.
Choosing and adequate propagation policy is a key factor in the
success of searching in a peer-to-peer system. This decision
depends on factors such as the information load in the system.
That is, if there is little information in the system, what is
convenient is to perform a depth-first as, for example, Gnutella
does. If there is a lot of information in the system, then a policy
that uses some type of routing information is preferable. In this
way, a depth-first strategy is avoided, as is the generation of a
huge amount of responses.
In a distributed search engine, as our system is, the information
load depends on the number of models that are stored in each

node and also on the features of the performed query that can be
quite frequent or rare. So, the exploration method is very
dynamic. Stochasticity depends on the results obtained so far. As
the number of results increases the search becomes more focused.
In fact, the implemented policy is a hybrid one since at the
beginning when there is little information in the system, search is
quite blind and messages are propagated to a set of neighbours
randomly chosen; as the systems builds better profiles, then these
profiles influence set of chosen neighbours. In this way,
propagation adapts to the volume of results. As the number of
results increase the life of a query decreases.

2.5 Privacy and anonimity

The information and the knowledge that the system contains
(queries, web page models, ratings, profiles, etc.) is a very critical
one from the point of view of privacy. Accessing to this
information could lead to the creation of personal profile for
illegitimate used by third parties. In fact, in the normal operation
of traditional centralized search engines users are subject to the
same risks. If each user has static IP, then the search engine can
associate that IP to the queries issued by the user. It is to be
supposed that centralized search engines are not going to use
illegally this information since they risk losing all their reputation
as trustworthy systems.
In a peer-to-peer system, each node in the network routs queries
and results. So, a malicious node could use the information that
flows through it for non-authorized aims [25]. In peer-to-peer
systems, direct encryption of data only protects from sniffers
spying the communication between nodes in the system. It does
not prevent malicious use by a node, since this node can decode
the message in order to propagate it. One possibility to prevent
this could be to use techniques that use matching of encrypted
information pieces [2], however they are not powerful enough to
be used in that kind of system.
Another possible technique to ensure privacy is the one used by
Freenet [11] which is based in the replication and distribution of
information across different network nodes in such a way that
information contained in a node does not to be owned by it. This
system also helps in improving information recovery since it
applies an aggressive cache policy. Up to now we have not resort
to this technique because we think that is very important to keep
all information about a user in his own node.
Our system uses a very simple technique, which is based in the
partial vision that each node has of the whole system. A node
only knows about its neighbours and it can only send or propagate
a request or a result to or from its neighbouring nodes.
In the request message there is no information about the real
originator of the message or of the steps performed by the
message, i.e., TTL. The message contains no information that
allows identification of the request or results originator. As it has
been already commented in section 2.4, this method is slightly
slower since results that usually are directly transferred between
the producing and consuming nodes now has to unwind the path
between intermediate nodes. This disadvantage prevents nodes
from knowing which is the requesting node or the one generating
results. Thus, a network of “blind proxies” [5] is used to mask the
real producers and consumers.

3. NODE ARCHITECTURE
Porqpine is composed by an undetermined number of nodes, each
one is an application, more concretely, an application based on a
multi-agent system. Taken together all nodes, communicating in a
peer-to-peer fashion, become the Porqpine system. In Figure 3
there is a sketch of a node’s architecture.

Figure 3. Porqpine’s node architecture

The user can interact with the system in two different ways: One
is using the Porqpine’s Graphical User Interface, from now on
GUI. The other one is through the usual web browser that is
monitored by the Tracking Agency. It is worth remarking that the
system is always running in background, although the user is not
using the GUI. Each agent, or agency, has a set of tasks to
accomplish, which are going to be outlined in the following.

Tracking Agency: monitors the user actions that take place within
his web browser. These actions are basically: 1) performing a
search on a Conventional Search Engine (CSE), such as Google or
Altavista, and 2) navigating through the obtained results and the
subsequent logical actions, such as following a link, adding
results as a bookmark, printing a page, saving it to disk, and so
on. From these actions the system is able to catch information
about the user behaviour avoiding the usage of the system’s GUI.
This agency is a set of different agents, since there are several
CSEs to be monitored.

Profiler Agent: this agent gathers the information harvested by the
Tracking Agent and the User Agent about the user in order to
create knowledge about him. This knowledge is the user’s profile,
which is calculated by integrating the performed queries, as well
as the satisfaction issued by the user for a given result and query.
This satisfaction is evaluated implicitly [7,21] from the
information about the user’s action obtained by the Tracking
Agency and the User Agent.

Interface Agent: is responsible for connecting the GUI with the
node’s agency. This agent handles all the actions done by the user
within the GUI. This is the only agent that is not running
permanently, it is awakened only when the user interacts with the
GUI.

User Agent: is the agent that encapsulates all the user’s
information and other ones, such as profile, queries, results,
results’ ratings, etc. This agent, who is the connector between
every two nodes, manages all the privacy rules.

Search Agent: is the agent that searches within the local
repository, under the command of the User Agent. It is also
responsible for handling messages, both requests and responses,
keeping propagation policies, even though the information
encapsulated by the User Agent is also in charge of these aspects.
There is a narrow collaboration between these two agents.

Apart from the agents, there is also Porqpine GUI, which is the
front-end for the human user as well as the knowledge repository,
which stores mostly the web pages query-based model.
Communication between Porqpine nodes is always performed
from the Search Agent to the User Agent. Thus, all the
information that flows into a node is managed wisely by the
corresponding User Agent. After this brief description of the
architecture se will outline how the implementation of a
Porqpine’s node follows the described architecture.

4. APPLICATION
Even though the system is not finished, the most important
functionalities are already operative. Some details, such as the
GUI or the connectivity patterns, require an extra effort before the
test with real users, which is almost ready to ship. Hopefully a
first public version will be available on our website
http://www.porqpine.com before the end of the present year.

Figure 5. Porqpine’s GUI snapshot

In Figure 5 a snapshot of Porqpine’s GUI is shown. The
application is always running in background, searching in the
local knowledge repository, and routing messages. In Figure 6
some results of the system can be seen. Figure 6-1 shows the
results for user x’s query about “free interactive assistant” using
the system’s GUI. These results are not from the system since
there was no match for that query in our system, the results come
from a metasearch process against a widely known SCE, more
concretely, Google. Meanwhile, in Figure 6-2 user y performs the

query “free computer buddy” to Google using his habitual web
browser, that is Microsoft Explorer. In both cases the system is
registering implicitly the obtained information. After that, the
system is already able to answer to user z’s query “computer
assistant”, the results of such query can be seen in Figure 6-3. It
can be seen that user z has taken profit of the information
introduced by the other two users. However, the other two users
were no bothered by asking them to introduce anything. All the
process was done automatically by the system, without any user
direct intervention. From now on, the system will be able to
answer queries about that topic.

Figure 6. Porqpine’s results example

The application that runs in each node is written in C++. Right
now it only runs under Microsoft Windows environment, the OS
and the web-browser. The executable is smaller than 200Kb, the
allocation of resources, such as bandwidth and disk space, are
customizable. The information repository, where the query-based
models are stored in, is an efficient indexed file system developed
by ourselves, in order to obtain efficiency and to avoid that the
user have a third-party DB Engine installed.

5. EXPERIMENTS
Let us present and discuss the experiments that will confirm the
feasibility of the system and its performance.

The best experiment would be with real users, however, this test
is not possible at present time. We are on negotiation with our
University Managing Staff in order to deploy the system in the
Campus computers. Hopefully, the real deployment will be
possible very soon. In the meantime, we have developed a
framework to run simulation in order to test the behaviours of our
system. The experiments are lead to answer the three more
important questions about the systems feasibility and
performance. The questions to find out are the following: 1)
When is the system able to reply by using its own results without
the mediation of the SCSE? 2) What quality the results issued by
our system have, in terms of user satisfaction, compared with the

results obtained from the SCSE? And finally, 3) what amount of
messages are generated within the peer-to-peer network to
operate, in other words, which is the network traffic generated by
queries and results?

5.1 Experimental Framework
To carry out the simulations the following framework was
deployed. This framework contains information of web pages,
queries and users created following models that we will explain
after. The framework also contains two cores of a search engine;
the distributed one is our system. The other one is centralized,
which acts in a similar way than a real CSE, from now on it will
be called SCSE, simulated CSE. Each search engine core has only
access to its allowed information. Thus, our system cannot access
to the content-based models, and the SCSE cannot access neither
to the query-based models nor the users’ models.
The words in the framework are represented by integers. The
corpus, that is the set of all the possible words, is a circular vector
of size M. Proximity between words is equivalent to saying that
come from the same domain, that is, their meaning refers to the
same or similar topic. Hence, if we take a correlative set of words
they will be about the same topic. They are words that usually co-
occur in that domain. We are aware that is not always true
because words can have different meanings. However, the loss of
quality that one can incur by not having semantic consideration
would bring a framework even less realistic, since there would be
no way to create pages or queries about a given topic. If
neighbourhood is not taken into account, pages can be created by
using words randomly among all possible words in the language.
But in reality, pages do have a topic. The number of words
relevant to this topic is always smaller than the total number of
words of the language. Each word wk has a probability of being
chosen that follows a Zipf distribution [28], that is, a power-law
distribution p(wk) ∝ k-2 . The occurrence probability does not
depend on the position of the word in the corpus. Hence, the
occurrence probability of words contained in a set of correlative
words, which represent a given domain, also follows a Zipf
distribution. This distribution is found to hold for real data.
Intuitively it expresses the fact that a lot of words appear rarely
and some words appear very frequently.
To simulate the pages, a set of P web pages’ models was created.
Each page contained between 10 to 100 words; the number of
words in a page follows a uniform distribution. Conversely, words
that are chosen to appear in a page follow a power-law
distribution over a correlative subset of 2x1.96xM/100 words.
This corresponds to the interval [-1.96xM/100..1.96xM/100] if
we consider that the initial word, which is the centre of the
correlative subset, is represented by 0. Therefore, by choosing
words in this way we ensure that words occurring on a page are
topic related, since all the subset contains words that usually co-
occur. Somehow, a model with semantic coherence is obtained by
this process. The more we reduce the corpus size, the more
specific the topic composed by the correlative subset of words is.
In order to simulate queries we used the same approach, but the
correlative subset was smaller since queries are usually more
specific than web pages contents. Size was M/1000. The number
of words in a query lies in the interval [1..5].
Each page also have an objective and subjective rating,
respectively obj_rat and subj_rat. An objective rating is a real
number in the interval [0..1], and is randomly assigned. This
value represents the quality of a page from the objective point of

view, and it is usually calculated by the CSE by analysing the
links’ contents and topology [18,24]. This value would be used by
the SCSE to rank the results, as a real CSE does. Conversely, the
subjective rating is not present in the CSE, since they usually do
not take into account user preferences. The subjective rating is a
vector of G reals in the interval [-1..1] randomly assigned. Each
element of this vector is the page score for a undetermined
subjective attribute, such as the presence of videos in the page or
the lack of advertisements. What the attributes stand for is
completely irrelevant; they are only used to evaluate the user
satisfaction in the framework.
To simulate the users in the framework a set of U users has been
created. Each user has a knowledge profile, which is updated with
the queries that he issues. This profile, based on a vector space
model, represents the knowledge of the user as a representation of
the queries he created. In a similar fashion as it is done with
pages, the user do not use all the words in the corpus. An
individual user uses only 2x1.96xM/100 words from the whole
corpus. Users, which are nodes in the peer-to-peer network, have
a set of neighbours. For each of its neighbour, a user maintains a
neighbour profile updated from the results received from it. This
profile, which acts as a routing table, is useful for the message
propagation policy, as mentioned in section 2.4. In the framework
we have used a graph based on the Klemm-Eguíluz model [19] to
interconnect the nodes. This model generates a graph, whose
topology follows some of the most characteristic properties of
complex networks. For example, the in-degree distribution
follows a power-law and the average path length is small and the
clustering coefficient is high. These topologies, typical in complex
networks, usually arise in unsupervised dynamic systems like the
Web or a peer-to-peer system [3,4,32]. This is the reason why we
have chosen this model to generate a network with realistic
topology. A simulated user, also has subjective preferences,
subj_pref, a vector of G reals in the interval [-1..1] that is
initialised randomly. Thus, the subjective satisfaction, subj_satisf,
between a user and a query is calculated as follows:

2/)1__(),(_ +•=
→→

ij upji prefsubjratsubjpusatisfsubj

This subjective satisfaction value, in the [0..1] interval, is a score
of how much the user likes a page. The vectors subj_rat and
subj_pref, are never used by the Porqpine system, since they are
impossible to build implicitly. It is quite difficult to know if a
page is interesting for a user, knowing why he likes it would
require explicit knowledge about the page and the user that are
not available. These vectors are only used in the framework to
calculate the subj_satif value. This value is used either in the
system or in the framework in order to rank the results. In the real
system subj_satif is calculated by the Profile Agent with
information about the user’s actions, harvested by the User Agent
and the Tracking Agency. The satisfaction of a user ui, for a given
page pj, is a combination of the subjective satisfaction and the
objective quality of that page.

)),(_)(1(

)_(),(

ji

pji

pusatisfsub

ratobjpuonsatisfacti
j

α

α

−

+=

This is the measure we are going to use to test which system
retrieves better results. α is set up at 0.5. So, we give the same
importance to the single user’s opinion and to the objective rating
that is calculated by CSE’s as a global opinion.

The SCSE returns a maximum of 20 results for each query. The
ranking of results in the SCSE is done by means of Equation 3.

jipji pqratobjpqmatch
j

∩+= _),(

The match between a query and a page depends on two factors:
the objective rating of the page, and how many words they have
in common.

Eq. 3

Each user of our framework returns a maximum of 20 results,
however the user who started the query could receive more than
20 results coming form different users. Ranking is trickier than
the ranking done by SCSEs since our system takes more factors
into account. The similarity between two queries is calculated
with Equation 4. Only those queries whose similarity is higher
than a given threshold are taken into account, in the framework
the threshold used is 2/3.

j

ji

i

ji
ji q

qq
q

qq
qqsimilarity

22),(
∩

+
∩

= Eq. 4

Once two very similar queries have been found, user uj ranks each
one of the results, which are pages stored in his local repository,
as follows.

),(),(2
1

),(2
1),,,,(

mjji

lkmlkji

puonsatisfactiuusimilarity

qqsimilaritypqquumatch +=
 Eq. 5

Each user uj knows partially the profile of the requester, since it
comes with the query request. Not all the profile is added for
security reasons. Then the user who has a similar query stored in
his local repository will infer the user ui satisfaction for each
result uj has. This inferred satisfaction is calculated as a product
of the satisfaction of the owner of the result with that result and
the similarity between both users. In other words, if pm, was liked
by uj, and the profiles of ui and uj are similar, it is likely that the
same page pm will satisfy user ui. This is how collaborative
filtering works. The similarity between two users is calculated
from the number of common words they have in their profiles as
can be seen in Equation 6. The user’s profile is a vector space
model without TFIDF in the framework, and with it in the real
system.

Eq. 1Eq. 1

),min(

),(
ji

ji
ji uu

uu
uu

∩
=similarity Eq. 6

5.2 Results
Once the framework has been presented, let us introduce some of
the experiments that were carried out.

The corpus size M was set to 50x103. The number of users U was
set to 10x103, and the number of pages P was set to 100x103. The
number of queries presented to the system was 120x103. The
profiles had a length of 100. The graph was set up with
parameters m=10 and a=4 [19]. The simulation was carried out as
follows: at each step a query was generated by a randomly chosen
user, and submitted to the system. The first one hundred queries
of every ten thousand were used to build the statistics.

Eq. 2

0 2 4 6 8 10 12

x 104

0

10

20

30

40

50

60

70

80

90
Percentage of Replied Queries during the Running

P
er

ce
nt

ag
e

of
 R

ep
lie

d
Q

ue
rie

s

Queries Seen by the System
Figure 7. Percentage of Replied Queries

In Figure 7 we can observe how the system learnt to reply new
queries by itself. After seeing 20x103 queries, it was able to reply
between 70% and the 85% of the new queries. However, once the
system reached that stage it seemed to stabilize. That fact is
perfectly coherent with the idea presented in [22,33]. There are a
lot of queries that are very frequently repeated, and even more
queries quite related among themselves. However, there are also
some very infrequent queries that cannot be matched with any
other previous ones. Then the real system will act as a
metasearcher by searching in a centralized search engine, which
have a wide content-based model repository.

The learning capabilities of the system, that is, the capacity of
replying to new queries from those handled before, has been
shown. Therefore, it might be concluded that a system based on
distributed repositories of query-based models is able to reply a
high percentage of queries. Nevertheless, retrieving information is
not enough. The quality of the retrieved pages, i.e. the results is
also important. We used the satisfaction between the tuple <user,
result>, that is Equation 2, to evaluate the quality of the obtained
results.

-2 0 2 4 6 8 10 12 14
0.55

0.6

0.65

0.7

0.75

0.8

Porqpine Results

Conventional Results

Mean and Standard Deviation of the Satisfaction from the Results

S
at

is
fa

ct
io

n

Queries x 104

Throughout this paper we have described the Porqpine system,
which is a multi-agent system from which a collaborative and
truly distributed search engine. The main features of the presented
system are: 1) The introduction and usage of a novel model for
web pages based on query terms instead on the content or link
structure of a page. 2) The integration of the users’ subjective
ratings, registered implicitly by the system, in order to filter and
rank the results in a collaborative fashion. 3) The avoidance of a
central repository, which might be replaced by thousands of

Figure 8. Satisfaction with Obtained Results

Figure 8 shows how the results issued by our systems scored
better than those issued by a SCSE once our system had managed
more than 10x103 queries. The error bars, that represent the
standard deviation of the satisfaction, do not overlap significantly.
So, the differences in the satisfaction values are quite relevant.
Hence, we can conclude that the satisfaction with the results
issued by our system is higher. This is due to the collaborative
filtering approach, with which the system is able to yield
personalized results, against the general results harvested by the
SCSE. Such personalized results are more suited to the requester
preferences. Depending on user preferences, the system will come
up with a different set of results. Clearly, this fact also happened
in the results issued by our system and the SCSE. The common
results from both approaches amounted in mean to 47.62% of the
whole number of results, with a standard deviation of 33.83.

So far, thanks to the simulations on the proposed framework, we
have shown two very important points: 1) the system is able to
reply by itself the 70-85% of queries, after handling 20x103
queries, and 2) the results issued by our system are more
satisfying than those issued by a simulated conventional search
engine.

To conclude the experiments, we would like to make some
comments on the traffic of messages generated by the searching
process. As we mentioned in section 2.4, there are several
propagation policies in the literature. However, the scarce
knowledge that a single node has about the whole network
prevents us from using most of the techniques proposed by the
peer-to-peer community to reduce message traffic. On the other
hand, this limitation becomes an advantage when the anonymity
of the producers-consumers of queries and results is required. We
decided to trade efficiency for anonymity.

The size of the system’s graph, i.e. the number of edges, is close
to 200x103. So, a naïve approach such as a breed-first search, as
Gnutella [13] suggested, is absolutely out of question. Since the
number of requests for a simple query would be close to the size
of the graph, this would lead quickly to the collapse of the system.
The stochastic approach, introduced in section 2.4, combined with
the routing information given by the neighbour profiles performs
very well for reducing the amount of requests. Using this
propagation policy in simulations up to 300x103 queries resulted
in the following outcomes: the average number of requests was
37384, with a σ of 3908.2. The average number of responses was
116.06, with a σ of 200.32. And, the average percentage of
retrieving, which is the ratio between results retrieved versus
results available, was 0.9322 with a σ of 0.1127. Thus,
comparing our policy with a breadth-first search it is clear that we
have reduced the 80% of the messages by losing a 6.78% of the
available results.

6. CONCLUSIONS AND FURTHER
RESEARCH

personal repositories spreaded among the users’ computers. All
these advantages are only possible because the information is
distributed among all the nodes of the network, which
communicate with each other in a peer-to-peer fashion. The
introduction of the query-based model, or the subjective rating is
possible because personal information and knowledge is gathered,
maintained and managed by each single user.
Our system is very concerned about the privacy issues, which are
very important when personal information is managed. (Such as
queries, web pages visited, web pages, etc). Privacy in our system
lies in the anonymity of its members, either by using nicknames
or, more important for us, by the impossibility of being aware
who the real consumer-producer of queries and results is.
As it has been shown in section 5, experimental results look
promising. The results of the simulations encourage us to keep
working on that system, since its feasibility seems to be shown. It
is worth remarking that the system uses information coming from
conventional centralized search engines with a content-based
repository, so the system is not aimed to replace SCEs, but to
complement them. It does so by adding a user-personalization
layer and using collaborative filtering techniques, which bring our
system closer to being a recommender of web pages than a
‘simple’ search engine. Porqpine is not able to reply to all the
queries with its own information, but it does in a high percentage
of cases. Nevertheless, when results are available within the
system, they are of a higher quality, that is, the satisfaction the
users for the obtained results for a given query is higher.
On the other hand, the system is not free from drawbacks. The
most important one is the fact that it relies on the help of SCEs.
Implementing a distributed crawling component in the system, as
mentioned in section 2.2, might be a way to avoid this
dependence. Another drawback is the response time in
comparison to SCE’s response time. This slowness is because of
distribution of the information repositories and the peer-to-peer
search. However, thanks to the propagation policies, mentioned in
section 2.4, this waiting time can be reduced considerably.
Anyway, never will the system reply so fast as a SCEs will.
As future research there are several open. The tasks which we are
going to focus on are: 1) Improving knowledge acquisition from
the monitoring of users’ actions, in order to evaluate the
satisfaction of users implicitly [7,21]. 2) Studying different
network topologies, such as power-law, random or regular, to be
applied as a connectivity pattern between nodes. The ultimate
goal is to find a topology that maximizes a function of several
factors: the average path-length, the clustering coefficient and the
resilience against random failures or attacks [3,4,7,32]. This topic
has not been introduced throughout the paper, but is has a vital
importance for improving the propagation of information
throughout the network, its tolerance to random failures and its
refractiveness to directed attacks.

7. REFERENCES

[1] Ackerman, M.S., and McDonald, D.W. “Answer Garden 2:
Merging organizational memory with collaborative help”. In
Computer Supported Cooperative Work, pages 97–105,
1996.

[2] Adar, E. and Huberman, B.H. “A market for Secrets”. HP
Laboratories, Palo Alto. Available on
http://www.hpl.hp.com/shl/papers/mfs/.

[3] Adamic, L.A., The small world web. In S. Abiteboul and A.-
M. Vercoustre, editors, Proc. 3rd European Conf. Research
and Advanced Technology forDigital Libraries, ECDL,
number 1696. Springer-Verlag, 1999.

[4] Albert, R and Barabási, A.-L. “Statistical Mechanics of
Complex Networks”. Reviews of Modern Physics, vol 74, pp
47-97, January 2002.

[5] Anonymizer. Avaialable on http://anonymizer.com

[6] Breese, J.S., Heckermann, D. and Kadie, C. Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering.Proceedings of the 14th conference on Uncertainly
in Artificial Intelligence, Madison, Winsconsin (July 1998).
Morgan Kaufmann Publisher.

[7] Cooley, R. "Web Usage Mining: Discovery and Application
of Interesting Patterns from Web Data". Ph.D. Thesis.
University of Minnesota. May 2000.

[8] Cowan, R. and Jonard, N. “Network Structure and the
Diffusion of Knowledge”. MERIT Research Memorandum
N. 99-028, 1999

[9] Druschel, P. and Rowstron, A. “Pastry: Scalable, distributed
object location and routing for large scale peer-to-peer
systems”. Proceeding of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (2001).

[10] Firefly. Available on http://www.firefly.net/

[11] Freenet. Available on http://freenet.sourceforge.net/

[12] Glance, N.S. “Community Search Assistant”. Xerox Reserch
Centre Europe. (2000).

[13] Gnutella. Available on http://gnutella.wego.com/

[14] IMesh. Available on http://www.imesh.com/

[15] Joseph, S. Neurogrid: Semantically Routing Queries in Peer-
to-Peer Networks. Available on
http://www.neurogrid.net/NeuroGridSimulations.pdf

[16] Kautz, H., Selman, B., and Shah, M. The Hidden Web. AI
Magazine, (18), 1997.

[17] Kazza. Available on http://www.kazza.com/

[18] Kleinberg, J. “Authoritative sources in a hyperlinked
environment”. Technical Report RJ 10076, IBM, May 1997.

[19] Klemm, K., and Eguíluz, V.M. “Highly clustered scale-free
networks”. ArXiv:cond-mat/0107606, 2001.

[20] Konstan, J.A., Miller, B.N., Mailtz, D. ,Herlocker, J.L.,
Gordon, L.R. and Rield, J. “GroupLens: Applying
Collaborative Filtering to Usenet News”. Communications
of the ACM, vol 40. N.3. (pages 77-87). (March 1997)

[21] Lieberman, H. “Letizia: An Agent That Assists Web
Browsing". Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence IJCAI-95, (pages. 924-
929), 1995.

[22] Markatos, E.P. “On Caching Search Engine Query Results”.
Computer Comunications, vol 24., N.2, (pages. 137-143)
2001.

[23] Neurogrid. Available on www.neurogrid.net/

http://www.firefly.net/
http://freenet.sourceforge.net/
http://gnutella.wego.com/
http://www.neurogrid.net/NeuroGridSimulations.pdf
http://www.neurogrid.net/

[24] Page, L., Brin, S., R. Motwani, T. Winograd, “The PageRank
citation ranking: Bringing order to the Web”. Stanford
Digital Library working paper 1997-0072, 1997.

[25] Reiter, M.K. and Rubin, A.D. “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and
System Security, 1(1), pp 66-92, 1998.

[26] Resnick, P., Varian, H.R. “Recommender Systems”.
Communications of the ACM, vol. 40, nº 3 (Marzo 1997),
págs. 56-58.

[27] Sangüesa, R. and Pujol, J.M. “Net Expert: A multiagent
system for expertise location”. Internation Joint Conference
on Artificial Intelligence (IJCAI) Workshop on
Organizational Memories and Knowledge Management, pp.
85-93 ,Seattle, Aug. 2001.

[28] Salton, G. and McGill, M.J. “Introduction to Modern
Information Retrieval”. McGraw-Hill, 1983.

[29] Stoica, I., Morris, R. Karger, D. Kaashoek, M.F. and
Balakrishnan, H. “Chor: A scalable peer-to-peer lookup
service for internet applications”. Proceedings of the ACM
SIGCOMM’01 Conference (2001).

[30] Terveen, L., Hill, W., Amento, B., McDonald, D., Creeter, J.
“Phoaks: a System for Sharing Recommendations”.
Communications of the ACM, vol. 40, nº 3, pp 59-62, March
1997.

[31] Vázquez, A., Barrio, I., Vázquez-Salceda, J., Pujol, J.M. and
Sangüesa, R. “An agent-based Collaboratory”. Proceedings
of ACAI2001 & EASS2001 Student Sessions, Prague, July
2001.

[32] Watts, D.J., and Strogatz, S.H., Collective dynamics of
’small-world’ networks. Nature, (393), 1998.

[33] Xie, Y. and O’Hallaron, D. “Localitity in Search Engine
Queries and Its Implication for Caching”. Infocom (2002).
http://www-2.cs.cmu.edu/~ylxie/papers/infocom02.ps

http://www-2.cs.cmu.edu/~ylxie/papers/infocom02.ps

	INTRODUCTION
	SYSTEM DESCRIPTION
	Shared knowledge
	Query-based model
	Rating and Collaborative Filtering
	Message propagation
	Privacy and anonimity

	NODE ARCHITECTURE
	APPLICATION
	EXPERIMENTS
	Experimental Framework
	Results

	CONCLUSIONS AND FURTHER RESEARCH
	REFERENCES

