Porqpine: A Peer-to-Peer Search Engine

Josep M. Pujol
Technical University of Catalonia
C/Jordi Girona Salgado 1-3, C5-221
08034 Barcelona, Spain
+344017989
jmpujol@lsi.upc.es

Ramon Sangüesa
Technical University of Catalonia
C/Jordi Girona Salgado 1-3, C6
08034 Barcelona, Spain
+3493405640
sanguesa@lsi.upc.es

Juanjo Bermúdez
Technical University of Catalonia
C/Jordi Girona Salgado 1-3, C6
08034 Barcelona, Spain
+344015640
bermudez@lsi.upc.es

ABSTRACT

In this paper, we present a fully distributed and collaborative search engine for web pages: Porqpine. This system uses a novel query-based model and collaborative filtering techniques in order to obtain user-customized results. All knowledge about users and profiles is stored in each user node’s application. Overall the system is a multi-agent system that runs on the computers of the user community. The nodes interact in a peer-to-peer fashion in order to create a real distributed search engine where information is completely distributed among all the nodes in the network. Moreover, the system preserves the privacy of user queries and results by maintaining the anonymity of the queries’ consumers and results’ producers. The knowledge required by the system to work is implicitly caught through the monitoring of users actions, not only within the system’s interface but also within one of the most popular web browsers. Thus, users are not required to explicitly feed knowledge about their interests into the system since this process is done automatically. In this manner, users obtain the benefits of a personalized search engine just by installing the application on their computer. Porqpine does not intend to shun completely conventional centralized search engines but to complement them by issuing more accurate and personalized results.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Intelligent agents, Multiagent systems. H.3.1 [Content Analysis and Indexing]: Indexing methods. H.3.3 [Information Search and Retrieval]: Information filtering, Relevance feedback, Retrieval models, Search process, Selection process. H.3.4 [Systems and Software]: Distributed systems, Information networks, User profiles and alert services. H.3.5 [Online Information Services]: Data sharing. C.2.4 [Distributed Systems]: Distributed applications

General Terms

Keywords

Search, Search Engine, Distributed, peer-to-peer, p2p, Collaborative Filtering, Knowledge Sharing, Knowledge Management.

1. INTRODUCTION

Almost any web search engine presently in use (Google, Altavista, etc.) ignores completely the intentions, interests and preferences of their users. A substantial amount of information about users could be obtained from users when they perform a query or when they receive the results from a query. Some ways for taking advantage of user information have been [1,10,16,20,27,30,31] attempted but not much in the area of web searching engines. In part this is due to the highly centralized nature, at least at a conceptual level, of the indexing tasks of search engines. Our proposal attempts to create a highly distributed system where each user computer stores a part of the web model used for indexing and retrieving web resources in response to queries. All users share these partial models that globally create a consistent model for the web resource that is equivalent to its centralized counterpart. The rationale for the system is quite simple: information about web pages and other resources is shared in a peer-to-peer way. Although the system is not restricted to sharing models of web pages but of any type of resource accessible through the web, its most interesting application from the point of view of information sharing is the ability to share individual web models in order to build a distributed repository that, in principle, could complement the large centralized repositories built by search engines like Google or Altavista.

Going from a centralized paradigm towards a distributed one, brings in several advantages that cannot be exploited earlier. Basically, they are related to the fact that information has been collected, selected, stored and shared among users according to their profiles and interests. The active contributions of users present multiple advantages. In effect, the creation of a permanent user profile allows filtering search results depending on the user interests, introducing a certain degree of personalization in search. For example, an advanced Java programmer does not expect to obtain, for the same query terms, the same type of documents as a novice Java programmer. Moreover, user profiles allow automatic query expansion [12, 21,31] by inserting information about the user’s interests so that more precise and specific results should be expected. If one considers users not only as isolated individuals but also as a community then this social dimension could be exploited in order to access to the expertise of people with similar interests. If two people have similar knowledge and interest profiles, for example two advanced Java programmers, they would probably find interesting the same pages but these pages could be seen as not interesting to other no so similar people: novice programmers could find them too technical. The social dimension of the community allows clustering users according to their interests and expertise and so focus on interesting information by reducing the domain of interest.

The usage of a combination of the individual and social dimensions of users interests has been proposed for centralized and distributed knowledge sharing environments
uses a method that is different to the ones used by typical search engines. Usually search engines resort to some variation of the vector space model [28] to model the content of pages or the information associated to other resources or to link structure in order to index these pages. These models are known as “content-based models” and are quite comprehensive, since they associate a series of keywords to each page extracted from the page content or from the links that point to the page. The selection of which keywords are relevant, i.e., will be used to model the page is done by resorting to information retrieval techniques like, for example, TFIDF (Term Frequency-Inverse Document Frequency, [28]). All these processes are performed by crawlers continuously traversing the web, parsing pages and building their corresponding content models. Our system, by contrast, uses no crawler, although it could be possible that each node used several local agents devoted to these tasks.

Each web page contains many words that end up in the corresponding model, however a more accurate web page model could be obtained by using the terms appearing in queries that recover that page. That is the results obtained by a search engine in a given query q can be modelled by using the words that appear in query q and not the keywords extracted from the page. Although, apparently a great deal of information from each page is lost (keywords) more descriptive accuracy is obtained by using the terms in the query since a lot of noise is removed from the model. Another point that lead us to think that queries’ words would be a good descriptor is the fact that people also tend to use the same subset of words very frequently [22,33]. Thus, these words could be used to model the web page. This system however depends on the existence of a large repository of content-based models so that the query-based model can be used. These repositories could be, for example, the ones provided by an analysis of contents and by calculating important words in pages. Our system also uses a model based on the most relevant words but these words are not extracted by the system but introduced by human users with a high proficiency in their expertise domains. Users publish new web resources and assign a set of keywords. This can be also automatically inferred from other user’s actions: a bookmarking a page can be used to create a model for that page.

The next section describes in more detail all these aspects. Section 3 discusses the prototype architecture. Section 4 shows the application. Section 5 shows experimental results from the simulations performed for system testing. Last section draws conclusions and discusses further work.

2. SYSTEM DESCRIPTION

PorQpine is a fully distributed system; each user is one or exceptionally more than one node in the overall network. All nodes in the network are identical and their total composition results in a distributed search engine in a similar way as other peer-to-peer systems are used for file sharing [13,14,17]. The difference is in the fact that what is shared here are not files but the knowledge that the different users have about web pages.

2.1 Shared knowledge

In order to obtain this knowledge the system resorts to different information sources that are always related in some way or another to the user, be it in an explicit or implicit way. In the first case information contributed by the user is the basis; in the second case, user actions are analysed to extract some relevant information [7,21].

All the knowledge generated by each user is stored in the corresponding user node, i.e., his or her personal computer. In this way each user is the proprietor of his or her information. A User Agent protects it and is responsible for privacy protection. Although the knowledge is stored in a local and distributed fashion, it can be recovered through queries against the system. Different nodes share knowledge in a peer-to-peer fashion in such a way that they build a global knowledge on which local search procedures are combined, which results in a global search engine. Web pages and other resources are modelled by the keywords that were used located them. This mechanism is explained in the following.

2.2 Query-based model

In order to index and store web pages and resources our system uses a methods that is different to the ones used by typical search engines. Usually search engines resort to some variation of the vector space model [28] to model the content of pages or the information associated to other resources or to link structure in order to index these pages. These models are known as “content-based models” and are quite comprehensive, since they associate a series of keywords to each page extracted from the page content or from the links that point to the page. The selection of which keywords are relevant, i.e., will be used to model the page is done by resorting to information retrieval techniques like, for example, TFIDF (Term Frequency-Inverse Document Frequency, [28]). All these processes are performed by crawlers continuously traversing the web, parsing pages and building their corresponding content models. Our system, by contrast, uses no crawler, although it could be possible that each node used several local agents devoted to these tasks.

Each web page contains many words that end up in the corresponding model, however a more accurate web page model could be obtained by using the terms appearing in queries that recover that page. That is the results obtained by a search engine in a given query q can be modelled by using the words that appear in query q and not the keywords extracted from the page. Although, apparently a great deal of information from each page is lost (keywords) more descriptive accuracy is obtained by using the terms in the query since a lot of noise is removed from the model. Another point that lead us to think that queries’ words would be a good descriptor is the fact that people also tend to use the same subset of words very frequently [22,33]. Thus, these words could be used to model the web page. This system however depends on the existence of a large repository of content-based models so that the query-based model can be used. These repositories could be, for example, the ones provided by an analysis of contents and by calculating important words in pages. Our system also uses a model based on the most relevant words but these words are not extracted by the system but introduced by human users with a high proficiency in their expertise domains. Users publish new web resources and assign a set of keywords. This can be also automatically inferred from other user’s actions: a bookmarking a page can be used to create a model for that page.

The next section describes in more detail all these aspects. Section 3 discusses the prototype architecture. Section 4 shows the application. Section 5 shows experimental results from the simulations performed for system testing. Last section draws conclusions and discusses further work.

2. SYSTEM DESCRIPTION

PorQpine is a fully distributed system; each user is one or exceptionally more than one node in the overall network. All nodes in the network are identical and their total composition results in a distributed search engine in a similar way as other peer-to-peer systems are used for file sharing [13,14,17]. The difference is in the fact that what is shared here are not files but the knowledge that the different users have about web pages.

2.1 Shared knowledge

In order to obtain this knowledge the system resorts to different information sources that are always related in some way or another to the user, be it in an explicit or implicit way. In the first case information contributed by the user is the basis; in the second case, user actions are analysed to extract some relevant information [7,21].

All the knowledge generated by each user is stored in the corresponding user node, i.e., his or her personal computer. In this way each user is the proprietor of his or her information. A User Agent protects it and is responsible for privacy protection. Although the knowledge is stored in a local and distributed fashion, it can be recovered through queries against the system. Different nodes share knowledge in a peer-to-peer fashion in such a way that they build a global knowledge on which local search procedures are combined, which results in a global search engine. Web pages and other resources are modelled by the keywords that were used located them. This mechanism is explained in the following.

2.2 Query-based model

In order to index and store web pages and resources our system uses a methods that is different to the ones used by typical search engines. Usually search engines resort to some variation of the vector space model [28] to model the content of pages or the information associated to other resources or to link structure in order to index these pages. These models are known as “content-based models” and are quite comprehensive, since they associate a series of keywords to each page extracted from the page content or from the links that point to the page. The selection of which keywords are relevant, i.e., will be used to model the page is done by resorting to information retrieval techniques like, for example, TFIDF (Term Frequency-Inverse Document Frequency, [28]). All these processes are performed by crawlers continuously traversing the web, parsing pages and building their corresponding content models. Our system, by contrast, uses no crawler, although it could be possible that each node used several local agents devoted to these tasks.

Each web page contains many words that end up in the corresponding model, however a more accurate web page model could be obtained by using the terms appearing in queries that recover that page. That is the results obtained by a search engine in a given query q can be modelled by using the words that appear in query q and not the keywords extracted from the page. Although, apparently a great deal of information from each page is lost (keywords) more descriptive accuracy is obtained by using the terms in the query since a lot of noise is removed from the model. Another point that lead us to think that queries’ words would be a good descriptor is the fact that
From the big search engines like Google and Altavista. By using search engines, our system is able to transform content-based models into query-based with all their advantages: smaller models, more specific, more user-oriented. This dependence could be avoided in two different ways. Either the system creates its own repository through a distributed crawler (an option we are currently studying) or an incentive schema is set up to promote that users contribute with web resources to the system.

2.3 Rating and Collaborative Filtering
Once models are stored at each node of the peer-to-peer system, the next step consists in creating a true search engine for recovering the corresponding information. Recovery means not only to return results from different nodes but also to incorporate user profiles and knowledge in order to get a more powerful, personalized rating process.

Centralized search engines always return the same results for the same query, independently from users, since they have no personalization method. Some systems [21, 31] go one step further and introduce some filtering of the results obtained by a search engine by using the user’s profile.

Centralized search engines do not take advantage from the fact that each user gives a different assessment for each tuple composed by a web page and a query and that each user has a profile based on his interests. In fact, maintaining and updating a centralized repository with this type of personal information is very costly and probably inefficient. That type of information storage adapts well to a decentralized peer-to-peer solution, since personal profiling information belonging to each user is kept in his computer. This is interesting both for economy and privacy reasons.

Each user in the Porqpine systems issues either explicitly by a voting mechanism or implicitly through his actions a certain rating for each tuple <page, query>. So each node stores the query-based model of each page and the corresponding set of personal assessments for that page in relation to a given query. Each user has a profile that is implicitly built by the system and identifies the user in a given role. With all these components it is possible to apply a collaborative filtering technique. That is, given a user p and query q Porqpine will return pages that have been well rated by people similar to p as a result of a query similar to q. This pages will be interesting ones for user p since its rating will be calculated from opinions of other similar people which (1) have a similar knowledge to p’s for the same domain and (2) a similar analysis ability that is better than the one exhibited by automatic methods and (3) have similar interests. Each user with a similar profile to a given one will recommend pages that have been interesting to him, which in turn could be of interest to similar user. This is the core of collaborative filtering systems [6,10,20,26,27,31].

For example, if user “solso” issues a query about “java db jodbe”, the system will return pages that have been well rated by people with similar interests in a similar query, for example, “java jodbe”. Consequently, for the same query, a user with a very technical profile will get more technical pages than user with are more general profile. This is equivalent to asking to people similar to us which pages are more important for a given topic. This approach seems more natural and promising than the present and generalized one of asking an oracle for a given topic (query). However, collaborative filtering is not without its own problems. Typical ones are the “cold-start effect” that keeps the system with a low performance until the number of its users reach a critical mass and, even then, the problem due to lack of collaboration on the part of the existing users. In other words, the systems needs a significant amount of data in order to respond and the users have to somehow participate in the rating process for the system to issue trustworthy ratings. Still, the system can work without annoying its users by requesting explicit ratings. In fact it can gather information about the user’s interests by observing his actions [7,21].

2.4 Message propagation
So far, we have only spoken about the information or knowledge contained in each node. Nevertheless, this information needs to be shared among all the nodes. To do so, the peer-to-peer approach has been chosen, each single node is not only an information producer or consumer, but also is a router that forwards requests and results. Usually peer-to-peer systems forward requests, in such a way that, once the information or the file is found, a direct communication between the consumer (who queries) and the producer (who serves), is established. Our system does not work this way. The results are also sent back to the consumer through the peer-to-peer network. This is due to the fact that both the request and the result do not have information about who was the real initiator of the request, or even who answered with results. By doing so, anonymity is preserved, as is will be discussed in the next subsection.

In Figure 2 we can see how propagation works. A node i generates a query, then node i performs a search in the local repository for that query, and at same time the query is forwarded to node j’s neighbours, who act in the same manner, search in the local repository and propagate the query by becoming themselves senders of that query. By doing so, when agent m receives a query it will not know who the initial sender was. In fact, node i, who sent the request to node m cannot be sure if node i was the real initiator or a mere mediator. Only the node that launched a query knows that it was the initiator. Once results are found in a local repository and sent to the network, the same process happens again: nobody can be sure about who the producer was, because each node could be a mere mediator. When results arrive to the initiator que process finishes, and no node in the network can infer nothing for sure about their neighbours.

With the exception of how results are managed, our system is exactly like a conventional peer-to-peer system. There are several policies for request propagation in the peer-to-peer literature [9,11,13,15,23,29]. Some of them are really simple, such as Gnutella [13] with its breadth-first search. Other systems have more elaborated policies, based on the knowledge about other nodes [9,15,23], that knowledge can be used to improve the routing process.
A depth-first strategy is avoided, as is the generation of a huge amount of responses.

In a distributed search engine, as our system is, the information load depends on the number of models that are stored in each node and also on the features of the performed query that can be quite frequent or rare. So, the exploration method is very dynamic. Stochasticity depends on the results obtained so far. As the number of results increases the search becomes more focused. In fact, the implemented policy is a hybrid one since at the beginning when there is little information in the system, search is quite blind and messages are propagated to a set of neighbours randomly chosen; as the systems builds better profiles, then these profiles influence set of chosen neighbours. In this way, propagation adapts to the volume of results. As the number of results increase the life of a query decreases.

2.5 Privacy and anonymity

The information and the knowledge that the system contains (queries, web page models, ratings, profiles, etc.) is a very critical one from the point of view of privacy. Accessing to this information could lead to the creation of personal profile for illegitimate used by third parties. In fact, in the normal operation of traditional centralized search engines users are subject to the same risks. If each user has static IP, then the search engine can associate that IP to the queries issued by the user. It is to be supposed that centralized search engines are not going to use illegally this information since they risk losing all their reputation as trustworthy systems.

In a peer-to-peer system, each node in the network routes queries and results. So, a malicious node could use the information that flows through it for non-authorized aims [25]. In peer-to-peer systems, direct encryption of data only protects from sniffers spying the communication between nodes in the system. It does not prevent malicious use by a node, since this node can decode the message in order to propagate it. One possibility to prevent this could be to use techniques that use matching of encrypted information pieces [2], however they are not powerful enough to be used in that kind of system.

Another possible technique to ensure privacy is the one used by Freenet [11] which is based in the replication and distribution of information across different network nodes in such a way that information contained in a node does not to be owned by it. This system also helps in improving information recovery since it applies an aggressive cache policy. Up to now we have not resort to this technique because we think that is very important to keep all information about a user in his own node.

Our system uses a very simple technique, which is based in the partial vision that each node has of the whole system. A node only knows about its neighbours and it can only send or propagate a request or a result to or from its neighbouring nodes.

In the request message there is no information about the real originator of the message or of the steps performed by the message, i.e., TTL. The message contains no information that allows identification of the request or results originator. As it has been already commented in section 2.4, this method is slightly slower since results that usually are directly transferred between the producing and consuming nodes now has to unwind the path between intermediate nodes. This disadvantage prevents nodes from knowing which is the requesting node or the one generating results. Thus, a network of "blind proxies" [5] is used to mask the real producers and consumers.
3. NODE ARCHITECTURE

Porqpine is composed by an undetermined number of nodes, each one is an application, more concretely, an application based on a multi-agent system. Taken together all nodes, communicating in a peer-to-peer fashion, become the Porqpine system. In Figure 3 there is a sketch of a node’s architecture.

The user can interact with the system in two different ways: One is using the Porqpine’s Graphical User Interface, from now on GUI. The other one is through the usual web browser that is monitored by the Tracking Agency. It is worth remarking that the system is always running in background, although the user is not using the GUI. Each agent, or agency, has a set of tasks to accomplish, which are going to be outlined in the following.

Tracking Agency: monitors the user actions that take place within his web browser. These actions are basically: 1) performing a search on a Conventional Search Engine (CSE), such as Google or Altavista, and 2) navigating through the obtained results and the subsequent logical actions, such as following a link, adding results as a bookmark, printing a page, saving it to disk, and so on. From these actions the system is able to catch information about the user behaviour avoiding the usage of the system’s GUI. This agency is a set of different agents, since there are several CSEs to be monitored.

Profiler Agent: this agent gathers the information harvested by the Tracking Agent and the User Agent about the user in order to create knowledge about him. This knowledge is the user’s profile, which is calculated by integrating the performed queries, as well as the satisfaction issued by the user for a given result and query. This satisfaction is evaluated implicitly [7,21] from the information about the user’s action obtained by the Tracking Agency and the User Agent.

4. APPLICATION

Even though the system is not finished, the most important functionalities are already operative. Some details, such as the GUI or the connectivity patterns, require an extra effort before the test with real users, which is almost ready to ship. Hopefully a first public version will be available on our website http://www.porqpine.com before the end of the present year.

In Figure 5 a snapshot of Porqpine’s GUI is shown. The application is always running in background, searching in the local knowledge repository, and routing messages. In Figure 6 some results of the system can be seen. Figure 6-1 shows the results for user x’s query about "free interactive assistant" using the system’s GUI. These results are from a metasearch process against a widely known SCE, more concretely, Google. Meanwhile, in Figure 6-2 user y performs the
query "free computer buddy" to Google using his habitual web browser, that is Microsoft Explorer. In both cases the system is registering implicitly the obtained information. After that, the system is already able to answer to user z’s query "computer assistant", the results of such query can be seen in Figure 6-3. It can be seen that user z has taken profit of the information introduced by the other two users. However, the other two users were no bothered by asking them to introduce anything. All the process was done automatically by the system, without any user direct intervention. From now on, the system will be able to answer queries about that topic.

5. EXPERIMENTS

Let us present and discuss the experiments that will confirm the feasibility of the system and its performance.

The best experiment would be with real users, however, this test is not possible at present time. We are on negotiation with our University Managing Staff in order to deploy the system in the Campus computers. Hopefully, the real deployment will be possible very soon. In the meantime, we have developed a framework to run simulation in order to test the behaviours of our system. The experiments are lead to answer the three more important questions about the systems feasibility and performance. The questions to find out are the following: 1) When is the system able to reply by using its own results without the mediation of the SCSE? 2) What quality the results issued by our system have, in terms of user satisfaction, compared with the results obtained from the SCSE? And finally, 3) what amount of messages are generated within the peer-to-peer network to operate, in other words, which is the network traffic generated by queries and results?

5.1 Experimental Framework

To carry out the simulations the following framework was deployed. This framework contains information of web pages, queries and users created following models that we will explain after. The framework also contains two cores of a search engine; the distributed one is our system. The other one is centralized, which acts in a similar way than a real CSE, from now on it will be called SCSE, simulated CSE. Each search engine core has only access to its allowed information. Thus, our system cannot access to the content-based models, and the SCSE cannot access neither to the query-based models nor the users’ models.

The words in the framework are represented by integers. The corpus, that is the set of all the possible words, is a circular vector of size M. Proximity between words is equivalent to saying that come from the same domain, that is, their meaning refers to the same or similar topic. Hence, if we take a correlative set of words they will be about the same topic. They are words that usually co-occur in that domain. We are aware that is not always true because words can have different meanings. However, the loss of quality that one can incur by not having semantic consideration would bring a framework even less realistic, since there would be no way to create pages or queries about a given topic. If neighbourhood is not taken into account, pages can be created by using words randomly among all possible words in the language. But in reality, pages do have a topic. The number of words relevant to this topic is always smaller than the total number of words of the language. Each word wk has a probability of being chosen that follows a Zipf distribution [28], that is, a power-law distribution \(p(w_k) \propto k^{-2} \). The occurrence probability does not depend on the position of the word in the corpus. Hence, the occurrence probability of words contained in a set of correlative words, which represent a given domain, also follows a Zipf distribution. This distribution is found to hold for real data. Intuitively it expresses the fact that a lot of words appear rarely and some words appear very frequently.

To simulate the pages, a set of P web pages’ models was created. Each page contained between 10 to 100 words; the number of words in a page follows a uniform distribution. Conversely, words that are chosen to appear in a page follow a power-law distribution over a correlative subset of \(2x1.96xM/100 \) words. This corresponds to the interval \([-1.96xM/100..1.96xM/100]\) if we consider that the initial word, which is the centre of the correlative subset, is represented by 0. Therefore, by choosing words in this way we ensure that words occurring on a page are topic related, since all the subset contains words that usually co-occur. Somehow, a model with semantic coherence is obtained by this process. The more we reduce the corpus size, the more specific the topic composed by the correlative subset of words is. In order to simulate queries we used the same approach, but the correlative subset was smaller since queries are usually more specific than web pages contents. Size was M/1000. The number of words in a query lies in the interval \([1..5]\).

Each page also have an objective and subjective rating, respectively obj_rat and subj_rat. An objective rating is a real number in the interval \([0..1]\), and is randomly assigned. This value represents the quality of a page from the objective point of view.
view, and it is usually calculated by the \textit{CSE} by analysing the links’ contents and topology \cite{18,24}. This value would be used by the \textit{SCSE} to rank the results, as a real \textit{CSE} does. Conversely, the subjective rating is not present in the \textit{CSE}, since they usually do not take into account user preferences. The subjective rating is a vector of G reals in the interval $[-1..1]$ randomly assigned. Each element of this vector is the page score for a predetermined subjective attribute, such as the presence of videos in the page or the lack of advertisements. What the attributes stand for is completely irrelevant; they are only used to evaluate the user satisfaction in the framework.

To simulate the users in the framework a set of U users has been created. Each user has a knowledge profile, which is updated with the queries that he issues. This profile, based on a vector space model, represents the knowledge of the user as a representation of the queries he created. In a similar fashion as it is done with pages, the user do not use all the words in the corpus. An individual user uses only $2 \times 1.96 \times M/100$ words from the whole corpus. Users, which are nodes in the peer-to-peer network, have a set of neighbours. For each of its neighbour, a user maintains a neighbour profile updated from the results received from it. This profile, which acts as a routing table, is useful for the message propagation policy, as mentioned in section 2.4. In the framework we have used a graph based on the Klemm-Eguíluz model \cite{19} to interconnect the nodes. This model generates a graph, whose topology follows some of the most characteristic properties of complex networks. For example, the in-degree distribution follows a power-law and the average path length is small and the clustering coefficient is high. These topologies, typical in complex networks, usually arise in unsupervised dynamic systems like the Web or a peer-to-peer system \cite{3,4,32}. This is the reason why we have chosen this model to generate a network with realistic topology. A simulated user, also has subjective preferences, subj_pref, a vector of G reals in the interval $[-1..1]$ that is initialised randomly. Thus, the subjective satisfaction, $\text{subj}_\text{satisf}$, between a user and a query is calculated as follows:

$$\text{subj}_\text{satisf}(u, p_j) = (\text{subj}_\text{rat}_{p_j} \cdot \text{subj}_\text{pref} + 1)/2$$

This subjective satisfaction value, in the $[0..1]$ interval, is a score of how much the user likes a page. The vectors subj_rat and subj_pref are never used by the Poropine system, since they are impossible to build implicitly. It is quite difficult to know if a page is interesting for a user, knowing why he likes it would require explicit knowledge about the page and the user that are not available. These vectors are only used in the framework to calculate the $\text{subj}_\text{satisf}$ value. This value is used either in the system or in the framework in order to rank the results. In the real system $\text{subj}_\text{satisf}$ is calculated by the \textit{Profile Agent} with information about the user’s actions, harvested by the \textit{User Agent} and the \textit{Tracking Agency}. The satisfaction of a user u_i for a given page p_j, is a combination of the subjective satisfaction and the objective quality of that page.

$$\text{satisfaction}(u_i, p_j) = \alpha (\text{obj}_\text{rat}_{p_j}) + (1-\alpha)(\text{subj}_\text{satisf}(u_i, p_j))$$

This is the measure we are going to use to test which system retrieves better results. α is set up at 0.5. So, we give the same importance to the single user’s opinion and to the objective rating that is calculated by \textit{CSE}’s as a global opinion.

The SCSE returns a maximum of 20 results for each query. The ranking of results in the SCSE is done by means of Equation 3.

$$\text{match}(q_i, p_j) = \text{obj}_\text{rat}_{p_j} + |q_i \cap p_j|$$

Eq. 3

The match between a query and a page depends on two factors: the objective rating of the page, and how many words they have in common.

Each user of our framework returns a maximum of 20 results, however the user who started the query could receive more than 20 results coming form different users. Ranking is trickier than the ranking done by \textit{SCSEs} since our system takes more factors into account. The similarity between two queries is calculated with Equation 4. Only those queries whose similarity is higher than a given threshold are taken into account, in the framework the threshold used is 2/3.

$$\text{similarity}(q_i, q_j) = \frac{|q_i \cap q_j|}{\sqrt{2|q_i| + 2|q_j|}}$$

Eq. 4

Once two very similar queries have been found, user u_i ranks each one of the results, which are pages stored in his local repository, as follows.

$$\text{match}(u_i, u_j, q_k, q_i, p_m) = \frac{1}{2} \text{similarity}(q_k, q_i) + \frac{1}{2} \text{similarity}(u_i, u_j) \text{satistaction}(u_i, p_m)$$

Eq. 5

Each user u_i knows partially the profile of the requester, since it comes with the query request. Not all the profile is added for security reasons. Then the user who has a similar query stored in his local repository will infer the user u_i satisfaction for each result u_j has. This inferred satisfaction is calculated as a product of the satisfaction of the owner of the result with that result and the similarity between both users. In other words, if p_m was liked by u_j, and the profiles of u_i and u_j are similar, it is likely that the same page p_m will satisfy user u_i. This is how collaborative filtering works. The similarity between two users is calculated from the number of common words they have in their profiles as can be seen in Equation 6. The user’s profile is a vector space model without \textit{TFIDF} in the framework, and with it in the real system.

$$\text{similarity}(u_i, u_j) = \frac{|u_i \cap u_j|}{\min(|u_i|, |u_j|)}$$

Eq. 6

5.2 Results

Once the framework has been presented, let us introduce some of the experiments that were carried out.

The corpus size M was set to 50×10^3. The number of users U was set to 10×10^3, and the number of pages P was set to 100×10^3. The number of queries presented to the system was 120×10^3. The profiles had a length of 100. The graph was set up with parameters $m=10$ and $\alpha=4$ \cite{19}. The simulation was carried out as follows: at each step a query was generated by a randomly chosen user, and submitted to the system. The first one hundred queries of every ten thousand were used to build the statistics.
Figure 7. Percentage of Replied Queries

In Figure 7 we can observe how the system learnt to reply new queries by itself. After seeing 20x10^4 queries, it was able to reply between 70% and the 85% of the new queries. However, once the system reached that stage it seemed to stabilize. That fact is perfectly coherent with the idea presented in [22,33]. There are a lot of queries that are very frequently repeated, and even more queries quite related among themselves. However, there are also some very infrequent queries that cannot be matched with any other previous ones. Then the real system will act as a metasearcher by searching in a centralized search engine, which have a wide content-based model repository.

The learning capabilities of the system, that is, the capacity of replying to new queries from those handled before, has been shown. Therefore, it might be concluded that a system based on distributed repositories of query-based models is able to reply a high percentage of queries. Nevertheless, retrieving information is not enough. The quality of the retrieved pages, i.e. the results is also important. We used the satisfaction between the tuple <user, result>, that is Equation 2, to evaluate the quality of the obtained results.

Figure 8 shows how the results issued by our systems scored better than those issued by a SCSE once our system had managed more than 10x10^7 queries. The error bars, that represent the standard deviation of the satisfaction, do not overlap significantly. So, the differences in the satisfaction values are quite relevant. Hence, we can conclude that the satisfaction with the results issued by our system is higher. This is due to the collaborative filtering approach, with which the system is able to yield personalized results, against the general results harvested by the SCSE. Such personalized results are more suited to the requester preferences. Depending on user preferences, the system will come up with a different set of results. Clearly, this fact also happened in the results issued by our system and the SCSE. The common results from both approaches amounted in mean to 47.62% of the whole number of results, with a standard deviation of 33.83.

So far, thanks to the simulations on the proposed framework, we have shown two very important points: 1) the system is able to reply by itself the 70-85% of queries, after handling 20x10^4 queries, and 2) the results issued by our system are more satisfying than those issued by a simulated conventional search engine.

To conclude the experiments, we would like to make some comments on the traffic of messages generated by the searching process. As we mentioned in section 2.4, there are several propagation policies in the literature. However, the scarce knowledge that a single node has about the whole network prevents us from using most of the techniques proposed by the peer-to-peer community to reduce message traffic. On the other hand, this limitation becomes an advantage when the anonymity of the producers-consumers of queries and results is required. We decided to trade efficiency for anonymity.

The size of the system’s graph, i.e. the number of edges, is close to 200x10^4. So, a naïve approach such as a breed-first search, as Gnutella [13] suggested, is absolutely out of question. Since the number of requests for a simple query would be close to the size of the graph, this would lead quickly to the collapse of the system. The stochastic approach, introduced in section 2.4, combined with the routing information given by the neighbour profiles performs very well for reducing the amount of requests. Using this propagation policy in simulations up to 300x10^3 queries resulted in the following outcomes: the average number of requests was 37384, with a σ of 3908.2. The average number of responses was 116.06, with a σ of 200.32. And, the average percentage of retrieving, which is the ratio between results retrieved versus results available, was 0.9322 with a σ of 0.1127. Thus, comparing our policy with a breadth-first search it is clear that we have reduced the 80% of the messages by losing a 6.78% of the available results.

6. CONCLUSIONS AND FURTHER RESEARCH

Throughout this paper we have described the Porqpine system, which is a multi-agent system from which a collaborative and truly distributed search engine. The main features of the presented system are: 1) The introduction and usage of a novel model for web pages based on query terms instead on the content or link structure of a page. 2) The integration of the users’ subjective ratings, registered implicitly by the system, in order to filter and rank the results in a collaborative fashion. 3) The avoidance of a central repository, which might be replaced by thousands of
personal repositories spreaded among the users’ computers. All these advantages are only possible because the information is distributed among all the nodes of the network, which communicate with each other in a peer-to-peer fashion. The introduction of the query-based model, or the subjective rating is possible because personal information and knowledge is gathered, maintained and managed by each single user.

Our system is very concerned about the privacy issues, which are very important when personal information is managed. (Such as queries, web pages visited, web pages, etc). Privacy in our system lies in the anonymity of its members, either by using nicknames or, more important for us, by the impossibility of being aware who the real consumer-producer of queries and results is.

As it has been shown in section 5, experimental results look promising. The results of the simulations encourage us to keep working on that system, since its feasibility seems to be shown. It is worth remarking that the system uses information coming from conventional centralized search engines with a content-based repository, so the system is not aimed to replace SCEs, but to complement them. It does so by adding a user-personalization layer and using collaborative filtering techniques, which bring our system closer to being a recommender of web pages than a 'simple' search engine. Porpygine is not able to reply to all the queries with its own information, but it does in a high percentage of cases. Nevertheless, when results are available within the system, they are of a higher quality, that is, the satisfaction the users for the obtained results for a given query is higher.

On the other hand, the system is not free from drawbacks. The most important one is the fact that it relies on the help of SCEs. Implementing a distributed crawling component in the system, as mentioned in section 2.2, might be a way to avoid this dependence. Another drawback is the response time in comparison to SCE’s response time. This slowness is because of distribution of the information repositories and the peer-to-peer search. However, thanks to the propagation policies, mentioned in section 2.4, this waiting time can be reduced considerably. Anyway, never will the system reply so fast as a SCEs will.

As future research there are several open. The tasks which we are going to focus on are: 1) Improving knowledge acquisition from the monitoring of users’ actions, in order to evaluate the satisfaction of users implicitly [7,21]. 2) Studying different network topologies, such as power-law, random or regular, to be applied as a connectivity pattern between nodes. The ultimate goal is to find a topology that maximizes a function of several factors: the average path-length, the clustering coefficient and the resilience against random failures or attacks [3,4,7,32]. This topic has not been introduced throughout the paper, but is has a vital importance for improving the propagation of information throughout the network, its tolerance to random failures and its refractiveness to directed attacks.

7. REFERENCES

