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Abstract—The typical state-of-the-art routing algorithms for
delay tolerant networks are based on best next hop hill-climbing
heuristics in order to achieve throughput and efficiency. The
combination of these heuristics and the social network structure
leads the routing to direct most of the traffic through a small
subset ofgood users. For instance, in the SimBet algorithm, the
top 10% of users carry out 54% of all the forwards and 85% of
all the handovers. This unfair load distribution is not sustainable
as it can quickly deplete constraint resources in heavily utilized
mobile devices (e.g. storage, battery, budget, etc.). Moreover,
because a small number of users carry a significant amount
of the traffic, the system is not robust to random failures and
attacks.

To overcome these inefficiencies, this paper introduces Fair-
Route, a routing algorithm for delay tolerant networks inspired
by the social processes ofperceived interaction strength, where
messages are preferably forwarded to users that have a stronger
social relation with the target of the message; andassortativity,
that limits the exchange of messages to those users with similar
”social status”. We compare the performance of FairRoute to
the state-of-the-art algorithms by extensive simulationson the
MIT reality mining dataset. The results show that our algorithm
outperforms existing algorithms in the de facto benchmark of
throughput vs. forwards. Furthermore, it distributes bett er the
load; the top 10% carry out 26% of the forwards and 28% of
the handovers without any loss in performance.

I. I NTRODUCTION

Thanks to the increasing number of mobile devices with
wireless capabilities [1], the possibility of communication
without network infrastructure is becoming a reality. For ex-
ample, pocket switched networks rely exclusively on users ex-
changing messages among themselves upon proximity encoun-
ters. Provided that a significant amount of traffic is composed
of delay tolerant messages, this paradigm, known also as delay
tolerant networks (DTN) [2], could contribute to significantly
reduce infrastructure costs and increasing bandwith by orders
of magnitude [3].

Because of their potential benefits, there has been a sig-
nificant body of work in DTNs, with emphasis on routing
algorithms. Since the seminal Epidemic routing algorithm [4]
was introduced, there has been a succession of algorithms
aimed at maximizing throughput – the number of messages
arriving to the destination – while minimizing the traffic
overhead caused by the number of forwards. While Epidemic
routing achieves the optimal throughput, it is very inefficient:
multiple copies of a message are forwarded until the network
is flooded with redundant messages. Although there have
been proposals to reduce the network overhead of flooding

[5], current algorithms do not duplicate messages in the
network. This single-copy strategy requires routing algorithms
to implement anext-best-hopheuristic which forwards the
messages to those nodes with a highest probability to deliver
the message to its destination.

Some algorithms operate under the assumption that the
network of contacts is known a priori [6]. However, most
recent algorithms rely only on mobility [7], [8], [9], [10],
[11]. The availability of good quality datasets with contact
traces gathered from real human mobility patterns [12], [13],
has spurred a breed of sophisticated routing algorithms that
exploit the topological properties of social networks [14], [15]
to compute thenext-best-hopheuristics.

For instance, SimBet [16] relies on social distance based on
transitivity [17] and betweenness centrality [18]. Also, Bubble
[19] takes advantage of the empirically observed community
structure in social networks [20] to decide which heuristicis
more likely to be effective depending on the social group of
the destination.

II. M OTIVATION : FAIRNESS WHO?

Routing in DTNs requires the answer to two questions [21]:
1) how the best next hop is calculated; and 2) how the traffic
load is distributed among users. Most of the existing work has
focused on maximizing throughput and minimizing number
of forwards in order to obtain efficient algorithms with high
delivery ratios, but with the exception of [22], [23], therehas
been no attention to scalability and reliability. However,the
intrinsic nature of DTNs, based on both human interaction and
mobile phones, makes those networks prone to failures.

Contact traces used by DTN routing algorithms are cor-
related to social networks [24], [14], and social networks
are a particular case of complex networks [25], [26]. One
of the characteristics of such networks is that they exhibit
a fat-tail connectivity distribution, where few nodes have
many connections whereas the majority have very few. Since
messages are forwarded via contacts, it is inevitable that the
most connected nodes carry the majority of the traffic, hence
producing an unfair load distribution. This is true even if traffic
is routed at random.

Unfortunately for DTNs, fairness can only worsen if heuris-
tics are applied to the forwarding decisions as we will show
next. Let us assume a random forward algorithm. Then the
message forwarding process is a random walk over a network
with the normalized adjacency matrixA. The probability of
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going from nodei to nodej is Aij , which is the inverse of
i’s connectivity degree under the random routing assumption.
On the other hand,j’s probability of receiving a message is
∑

i Aij . It trivial to see that nodes with higher connectivity
have a higher probability of receiving the message. The
probability of finding a message in nodej, which is equivalent
to its traffic load, can be calculated as the first eigenvectorof
PT , wherePi,j = Ai,j(

∑

j Ai,j)
−1 is the stochastic matrix

corresponding toA. The eigen vector for adjacency matrices
of heterogeneous connectivity distributions will be skewed
towards the most connected nodes. Thus, thenatural unbal-
ance of the load distribution in complex networks appears.
Furthermore, if the forward is not random, but informed by
an heuristic that biases towards connectivity, the probability of
the highly connected nodes to receive messages is inevitablely
increased, and therefore, the load distribution to become even
more unbalanced.

In systems that display a similar complex network connec-
tivity such as the Internet, road networks or airline traffic; the
unbalance problem is solved by upgrading the resources of
the bottleneck nodes, e.g., by installing faster switches,con-
structing more 8-lane highways or expanding the airports with
more terminals. However, this solution cannot be implemented
system-wide in DTNs because every single node belongs to
a different administrative domain (i.e., individual users). In
addition, the mobile phone market is fairly homogeneous in
terms of resources consumption, such as battery-life. There-
fore, unlike other systems, thenatural unbalance due to the
network structure cannot be compensated by assuming that all
the bottleneck nodes will be upgraded.

Under these circumstances failures can occur by a variety
of reasons: 1) nodes do not have enough resources to manage
the load and fail [27], 2) important nodes are logic targets
of attacks [28]; and 3) the mismatch between the incurred
cost (total messages to forward) and the utility (own messages
to forward) of the bottleneck nodes is a deterrent for their
participation in the network, and these nodes are, ironically,
the most needed [29]. These problems illustrate the need of a
fair distribution of the traffic load in the routing algorithms of
DTNs. As an example, fairness and load balance are recurrent
topics in other areas such as wireless sensor networks or
Internet [30], [31], [32].

The rest of the paper is organized as follows: in Sec-
tion III we present FairRoute, our DTN routing algorithm.
In Section IV we discuss the empirical dataset used in the
simulation as well as the experimental design. Sections V – VII
summarize and discuss the results of the experiment in terms
of efficiency and throughput (Section V), fairness (SectionVI)
and goodness of the assortative load control (Section VII).
Finally Section VIII presents the conclusions and future work.

III. FAIRROUTE ALGORITHM

In DTNs messages are forwarded from node to node upon
proximity contacts. Because the trace of contacts is a social
network, we turn into social science to design an effective
routing algorithm that overcomes the unfairness problem of
existing algorithms. In particular FairRoute relies inperceived

interaction strengthand assortativity to guide the forward
decision upon contact.

A. Interaction Strength at Different Time Scales

The perceived interaction strength, a concept developed
from social influence [33] [34], represents the subjective
assessment of the strength of a social tie between two in-
dividuals. The interaction strength can be used as an indicator
of the likelihood of a contact to be sustained over time.
FairRoute uses two different estimators of interaction strength
that operate at different time scales:σij that indicates the
interaction strength betweeni andj in the short term; andλij

that indicates the interaction strength in a longer time scale.
The strength of theij interaction increases upon contact but
decreases over time at an exponential raterσ and rλ for the
short term and long term interaction strength respectively. For
such reason it is required thatrλ ≪ rσ.

When a contact betweeni and j takes place, the nodes
update their perceived interaction strengths as follows:

σik = σike−rσ(t−ti) ∀k∈Ni
, (1)

λik = λike−rλ(t−ti) ∀k∈Ni
, (2)

(σij , λij) = (σij , λij) + (1, 1) , (3)

whereNi is the list of contacts of nodei, ti is the time of node
i’s last contact (with any other node), andt is the current time.
Upon contact, nodei updates the exponential decrease of the
perceived strength with all the nodes that have encounteredin
the past (Ni); increases the interactions strength with nodej

by 1 (both the long term and the short term), and finally, the
time of last contact is updated (ti = t).

We then define theaggregated interaction strengthsij

between nodesi and j as sij = λij(λij − σij). Intuitively,
the aggregated interaction strength is an indication of the
frequency of long term interactions (proportionality toλij ),
while penalizing spurious bursts of activity (proportionality to
the difference between long and short time scales(λij −σij)).

Let defineuijk as nodei’s perceived utility of nodej to
deliver a message to nodek as

uijk =
λjk(λjk − σjk)

λjk(λjk − σjk) − λik(λik − σik)
, (4)

which representsutility of nodej to deliver a message tok
as seen by nodei, normalized by the total utility. For values
of uijk > 0.5, we expect the nodej to do a better job thani
delivering the message tok. The utility uijk is defined only
whenλik + λjk > 0, otherwise we set it as zero.

Analogously, letuij be i’s perceived utility of nodej to
deliver a messageto any node, defined as

uij =

∑

k∈Nj
λjk(λjk − σjk)

∑

k∈Nj
λjk(λjk − σjk) +

∑

k∈Ni
λik(λik − σik)

(5)

Finally, nodei will forward to j a message whose destina-
tion is k iff

{

uijk > 1
2 ∧ (λik + λjk) > 0

uij > 1
2 ∧ (λik + λjk) = 0

(6)



3

Notice that in order to calculate the utilitiesuijk, users only
exchange their perceived interaction strength on nodek, but
never exchange the full contact listNj. In order to obtainNj,
a nodei should probej for every possible value ofk in a short
period of time (as the valuesuijk decay with time). Then it
is very easy forj to identify such an attack and deny further
communication withi.

B. Assortative-Based Queue Control

The heuristics in (6) do not completely achieve a balanced
traffic distribution. The reason is that the routing decision is
still a greedy maximization of the utility, with the forwarding
biased towards the high connectivity nodes.

In order to counter this effect, we can again turn into sociol-
ogy and observe the mechanisms by which people decide with
whom they interact with. At the risk of being stereotypical,
is it an empirically observed fact that the social status of
someone’s neighours is a good indicator of his status. The
reason is that since social interactions require resourcesthat
are limited, humans carefully choose with whom they spend
their resources with, and tend to allocate them so that the
individual’s utility is maximized. In other words, people of
the same kind tend to interact together, and tend to disregard
interactions from individuals from a lower social status.

For example, a big shot professor would allocate to time to
review preliminary work from an equal peer, but it is unlikely
to do the same for a graduate student. This behavior, known as
assortativeness– or homophyly –, is one of the driving factors
on the way individuals interact with each other [35], [36],
[37], [38]. Assortativity is in fact what makes social networks
different from other complex networks [39].

To capture the assortativeness in our algorithm, we define
social statusof a node i in the DTN to be functionally
equivalent to the size of the node’s queue lengthQi. The
queue length can be interpreted an indication that the node
is often chosen to forward packets, and hence, is a measure
of its popularity1. Since accepting to forward a message has a
cost, nodes will only accept forward request from those nodes
of equal or higher status. With assortative-based queue control,
a nodei would forward a message directedk throughj if any
of the following conditions is met






(uijk > 1
2 ) ∧ (λik + λjk) > 0 ∧ (Qj 6 Qi)

(uijk = 1) ∧ (λik + λjk) > 0
(uij > 1

2 ) ∧ (λik + λjk) = 0 ∧ (Qj 6 Qi)
(7)

High status nodes will be able to forward messages faster due
to their privileged position, whereas low status nodes willhave
to find alternative paths. Since contact and social networks
have a diversity of paths between two nodes [40], [41],
constrains in the forwarding introduced by the assortative-
based control queue does not necessarily implies a reduction
of throughput (Section V). On the other hand, it does have
a positive impact on the fairness of the routing algorithm
(Section VI).

1Note that popularity does not necessarily means that the node is a high
performer, but instead that the node isperceivedto be very useful.

This mechanism of the queue size control to achieve load
balance is analogous to theback pressurecongestion control
[30], which is applied to fields such as the Internet [32], [42],
ATM and ethernet networks [43], and wireless sensor networks
[31], among others.

C. Privacy Considerations

As social network-based routing algorithms become more
sophisticated they require access to more information about
users, and therefore, they raise rightful privacy concerns. For
instance, Bubble and SimBet require access to the full list of
contacts of a contact. While this is common practice in social
networking sites, users of these systems explicitly aggregate
their friends. This is not the case of DTNs, where contacts
are aggregated upon proximity encounters. In addition, Bubble
also requires access to the social group label the target user
belongs to.

Having access to whom and how often a user has been
interacting with is a security issue, and can be misused, for
example, for profiling. While the authors’ argument is to trade
the privacy off in return for performance, we believe that it
is preferable to obtain performance without giving sensitive
information away.

IV. CONTACT TRACE AND EXPERIMENTAL DESIGN

A. Contact Dataset

Contract trace datasets [12], [13] are crucial to evaluate the
performance of routing algorithms in DTNs. While large scale
dataset (e.g. city-wide) are not available [44], the existing
datasets allow the benchmarking of social network based
routing algorithms. In this paper we use the MIT reality
mining dataset [13], which is widely used in the literature,
thus allowing a fair comparison of FairRoute with existing
DTN routing algorithm. The MIT dataset was collected in the
MIT campus, that represents a general purpose scenario better
than other existing datasets such as Infocom 2006 [10].

In the MIT dataset users carried a cell phone with a
software that logged contacts by proximity using the bluetooth
discovery function. From the dataset we extracted the list of
observed contacts:〈i, j, t〉 wherei andj are users, andt is the
time at which the interaction takes place. Some contacts might
not last enough to allow data transfer between cell-phones.
However, since we are only interested in patterns of human-
to-human contact, we do not take this factor into consideration.

The MIT dataset provides contact trace information for 100
users over a period of over a year2. Figure 1(a) shows the time
at which each contact takes place; there are three different
stages, the first 652 interactions took place over the first 7
months, which might correspond to the development of the
system. In the following 5 months the system showed 79840
interactions. In the last 4 months there was a decrease of the
activity and only 33577 contacts were collected.

We partition the MIT dataset into 16 overlapping subsets
each consisting in 35K contacts and a relative offset of 5K
contacts. The utility of this partition is twofold. First, it allows

2The first interaction is logged on 01/01/2004 and the last on 05/05/2005.
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Fig. 1. Partition of the MIT reality mining project dataset in overlapping
subsets

us to test the sensitivity of the algorithms against the existing
variance of the contacts. Second, it minimizes the bias of the
results toward the MIT dataset.

Figure 1(b) shows the comparison between the user’s cumu-
lative distribution in two partially overlapping subsets (from
30 to 65 thousand-th contact and from 50 to 85 thousand-
th contact). As expected, the aggregate contact distribution
does not experience a lot of variance – as contacts take place
between the same people in the same community. However, a
look at the individual level (Fig. 1(c)) reveals that the number
of contacts per user experiences a fair amount of variation.
Note that both subsets have a 42% overlap.

B. Reference Algorithms

We evaluate the performance of FairRoute against well-
known algorithms in the literature.

• Epidemic routing [4] is a flooding multi-copy algorithm
often used as a baseline for comparison because, while
extremely inefficient in the number of forwards, it is
optimal in terms of throughput. Furthermore, Epidemic
routing is very adequate when exploring fairness, because
its load distribution is caused solely by the network
topology (i.e., it does not apply any heuristic to direct
the forwarding).

• PROPHET [45] is widely used as the reference algorithm
in terms of efficiency (e.g. in [16], [19]). PROPHET uses
the history of contacts to calculate the probability of
a node to deliver the message to the destination. Like
FairRoute, it also takes the time between contacts into
account to update its utility function. In our simulations,
we use the parameters suggested by the author’s of
{Pinit, β, σ} = {0.75, 0.25, 0.99}.

• SimBet [16] combines a decentralized version of be-
tweenness centrality [46] and the probability of future
collaboration [17]. To the best of our knowledge Sim-
Bet is the better algorithm to date efficiency-wise. For

the simulations, and following the authors, we set the
parameterα = 0.5.

The algorithm Bubble [19], which exploits the community
structure found in social networks using a distributed cluster-
ing algorithm [47], was not included in our results because it
requires the sender to know the address and the social group
of the destination node, which is unfair to the other algorithms
that only require the address. In addition, in the original paper,
Bubble is not compared against the existing SimBet, but their
comparison with PROPHET indicates that its performance is
better than PROPHET but worse than SimBet.

C. Experimental Design

We run the four algorithms for each one of the 16 subsets
of the MIT contact dataset. The first 5K contacts of the subset
are used to bootstrap the different algorithms. This warm up
period is used to avoid introducing artifacts in the resultsdue
to the heuristics’ different convergence time. After warm up
phase, all the nodes send a message to every other node in the
system, resulting in 9120 messages.

FairRoute’s algorithm parameters are set torλ = 5 ×
10−4h−1 and rσ = 5 × 10−3h−1. Which correspond to
the an average inter-contact time of 2000 and 200 hours
respectively. These values will depend on the characteristic
inter-contact time of the social network under scrutiny, for
the MIT dataset they are extremely large because the contacts
are very sparse (Fig. 1(a)). We also tested the parameter’s
sensitivity. Perturbations up to one order of magnitude didnot
show qualitative changes on the results of the algorithm.

V. THROUGHPUT ANDEFFICIENCY EVALUATION

Maximizing the throughput, i.e., increasing the number of
messages that reach their destination, is the goal of any routing
algorithm. However, minimizing the number of forwards is
also crucial to limit the resource consumption due to traffic:
battery-life, storage, bandwidth. For this reason theefficiency,
or the ratio between throughput and number of forwards, in
combination with the throughput, are generally accepted asthe
metrics of choice for the routing algorithms.

Figure 2(a) shows the average throughput across the 16
subsets of the MIT dataset for all the algorithms. Table I
shows the variance and numerical results summarized. The
Epidemic routing yields the optimal throughput of 90% on
average. SimBet and FairRoute deliver 81.1% and 79.9% of
the messages respectively. PROPHET get a slightly worse
performance with an average throughput of 74.5%.

While all the algorithms achieve asymptotically good
throughputs, it is important to note that epidemic is not only
optimal in terms of throughput but also in delivery speed.
As an example, if we consider the throughput after 10K
contacts, the throughput is 36.4%, 12.7%, 12.5% and 12.4%
for Epidemic, SimBet, PROPHET and FairRoute respectively.
As we can see, the three single-copy algorithms have a very
similar performance, and the epidemic is clearly ahead of the
rest.

However, as Figure 2(b) shows, FairRoute requires consid-
erably less forwards. SimBet, PROPHET and epidemic require
1.37, 5.5 and 157 times more forwards than FairRoute.
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Fig. 2. Throughput and Efficiency Evaluation

Algorithm Throughput Forwards Efficiency
Avg(%) StdDev Avg StdDev Avg StdDev

Epidemic 89.85 3.03 518790 18947 0.016 0.001
PROPHET 74.53 4.21 180790 26187 0.038 0.006

SimBet 81.08 4.74 45141 5389 0.166 0.022
FairRoute 79.90 3.94 32998 1492 0.221 0.007

TABLE I
AVERAGE AND STANDARD DEVIATION FOR THROUGHPUT, FORWARDS

AND EFFICIENCY AT THE END OF THE SIMULATION.

We would like to mention than SimBet [16] uses a different
definition for forwards. They do not count as a forward the
final hop by which the message arrives to destination (the
handover). Also, they count as one forward when different
messages can be bundled in the same data transfer session.
This metric is somewhat misleading in terms of the cost
associated to a message. Handovers messages still have a cost
that needs to be accounted for when it send via wireless. The
same happens to messages that are delivered in the same data
transfer; the time of the transfer and its toll on the resources
will be multiplied by the number of messages contained in
the bundle. With SimBet’s metric, FairRoute (with 11849
operations) still outperforms SimBet (with 13908 operations).
Despite that, and for the sake of clarity, we take into account
each individual message transfer as a forward.

Finally, Figure 2(c) displays the average efficiency. The
most efficient algorithm is FairRoute followed by SimBet.
PROPHET and epidemic routing fall behind due to their high
costs in terms of number of forwards.

FairRoute’s efficiency of 0.22 means that each message
delivered to the destination requires, on average, 4.52 forward
operations. Thus, assuming that the traffic generated by the
routing algorithms is negligible when compared to the traffic
generated by the forwards, one message of 100Kb results in a
452Kb of traffic to be handled by the participants of the DTN.
In comparison, SimBet, PROPHET and Epidemic routing have
a cost of 6.02, 26.3 and 62.5 times the cost of forwarding one
message respectively.

A. Variance Across Subsets

As expected, the different subsets of the contact trace
have a strong variance in throughput, number of forwards

Algorithm top-1 top-10 top-20 Threshold
Epidemic 0.081 0.373 0.571 17

PROPHET 0.075 0.421 0.616 14
SimBet 0.134 0.539 0.706 9

FairRoute 0.046 0.275 0.452 24

TABLE II
DISTRIBUTION OF FORWARDS BY USERS: TOP-N CORRESPONDS TO THE
FRACTION OF THE TOTAL NUMBER OF FORWARDS CARRIED OUT BY THE
TOPN USERS. THRESHOLD IS THE NUMBER OF USERS THAT CARRY OUT

50% OF THE ALL FORWARDS. THE TOTAL NUMBER OF USERS IS96.

and efficiency (Table I). For instance, the throughput has a
standard deviation of 3.03% for epidemic routing, 3.94% for
FairRoute and 4.74% for SimBet. In the case of the number
of forwards, the standard deviation accounts for differences of
11.9%, 4.5% and 3.7% for SimBet, FairRoute and epidemic
routing respectively.

Such differences on the throughput and in the number of
forwards clearly show the sensitivity of routing algorithms to
the topology of the network of contacts. Despite the subsets
belonging to the same social/contact network, and being
clearly overlapped, the algorithms are sensitive to fluctuations
in the contact patterns. We anticipate the need for large scale
contact/social networks like [44] in order to explore the ro-
bustness of the routing algorithms for large-scale deployment.

VI. FAIRNESSEVALUATION

In the previous section we showed that FairRoute compares
favorably to the state-of-the art DTN routing algorithms.
Compared to SimBet, FairRoute obtains a 33% increase in
efficiently at a cost of just 1.2% loss in throughput. However,
despite the good performance on the standard metric, the aim
of FairRoute is neither throughput nor efficiency, but fairness.

Figure 3(a) shows the cumulative distribution of forwards
for the four different algorithms. We can see that thenatural
load distribution due to the network topology – shown by the
Epidemic routing – is already unbalanced: 50% of the traffic is
handled by only 17 users, the top-1 user deal single handedly
with 8.1% of the traffic in the system and the top-10 users
deals with 37%.

While the perfectly fair load balance would be that 50%
of traffic to be managed by 50% of users, it can only be
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Fig. 3. Fairness evaluation

achieved in a social network if there are no forwards but only
handovers (i.e., each individual simply waits until it comes
across the destination of the message – if ever). Since the
perfect fairness is unrealistic, we set the baseline reference
as the load distribution yield by the Epidemic routing, where
the network topology is the only factor driving the load
distribution.

As we discussed in Section II, the traffic load can only
get worse for PROPHET and SimBET algorithms. In SimBet
50% of traffic goes through only 9 nodes, from which the
top one handles 13.4%. PROPHET does better with 50% of
traffic being managed by 14 nodes and the top one node 7.5%
of the traffic load. This behavior can be extrapolated to all
routing algorithms based solely onbest next hopheuristics as
these heuristics contribute to the the already existing process
of preferential attachment [25] of traffic due to the network
topology. The fate of routing algorithms focused solely on best
next hope heuristics is to increase performance (throughput
and efficiency) at the expensed on unfair traffic distributions.

FairRoute, on the other hand, exhibits a load distribution
that is more fair than thenatural distribution of the epidemic
routing. The assortativeness-based control queue is able to
distribute the traffic more evenly among all the users, and
therefore, leverage the congestion problems and failures dis-
cussed in section III. In FairRoute, 50% of the traffic is
handled by 25% of users, significantly better than the 9.3% of
users for SimBet, the 14.5% of users for PROPHET and the
17.7% of the users for epidemic routing.

A. Query Size Dynamics and Robustness

Figure 4 displays the evolution of the queue size distribution
over time for the SimBet, PROPHET and FairRoute algo-
rithms. The white space between lines in the figure represents
the fraction of messages in transit that has in its queue (Qi)
at every interaction. During the initial stage of training (first
5K contacts) there is no forwarding and each user’s queue
contains exactly 95 messages.

In the case of SimBet, (Figure 4(a)), it is revealing to see
that right after the warmup period, two of the users accumulate

most of the messages in transit in their queues. This behavior
is inadvisable in terms of robustness, as a departure or a failure
of one of those users would result in a loss of an important
fraction of the messages waiting to be delivered.

The behavior of the queues of PROPHET (Fig. 4(b)) is
more robust than SimBet’s. The queue size distribution is quite
homogeneously distributed among all users. The apparent
discontinuity of the lines in the PROPHET is due to the
high turn over of messages in the queue; PROPHET has one
order of magnitude more forwards than SimBET and Fair-
Route. Consequently, messages exchange hands much more
frequently and the queue distribution shows these fluctuations.

The FairRoute’s queue size distribution (Fig. 4(c)) is
more balanced than the other algorithms. This is due to its
assortative-based queue control mechanism, which, as we saw
in Fig. 3(a), also makes the traffic load more balanced.

With the traffic load distribution (Fig. 3(a)) and the queue
size distribution (Fig. 4) we can explore the effect of fairness
on robustness with a simple analysis. Let assume that an error
happens during the forwarding process, and denoteei as the
probability of nodei fails. Let Qi,t be the size of the queue
of nodei at time t. We defineqi as the average relative size
of i’s queue over time with respect to the total number of
messages in the network, i.e.,qi =

P

t
Qi,t

P

t

P

j
Qj,t

. Let us also
denote the traffic load of nodei asfi, which is the fraction of
forwards carried out byi. Finally, let define thedamageD as
D =

∑

i eiqi, i.e., the average cost in the fraction of messages
in transit lost due a node’s failure.

We consider three types of failures or errors:

• Random Error: the probability of failure is equally dis-
tributed between all nodes. Thus,ei = 1

96 . Then, its
trivial to see that the damage isD = 1

96 . A random error
produces on average an loss of 1.04% of the messages
regardless the routing algorithm.

• Load/cost error3: in the case of an error, the probability
of failure of a nodei is proportional to its traffic load

3The case of a node defecting because its perceived cost/benefit ratio is
equivalent to the load error case.
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(a) SimBet algorithm
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(b) PROPHET algorithm
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(c) FairRoute algorithm

Fig. 4. Evolution of the queue size distribution for all nodes (stacked). The proportion of messages in transit stored inuser’s i queue corresponds to the
white space between to lines. The proportion are stacked so that them sum one. The first 5K contacts correspond to the warm up. In this period each user has
96

−1 of the messages stored in the queue. After the 5K contact, theforwarding starts and the queue size distribution evolves over time. This plot correspond
to the 10K-45K split of the MIT contact dataset.

fi (resources are depleted proportionally to the traffic).
Then, the average damage ofone failure due to load is
D =

∑

i eiqi, resulting in a damage of 5.81 for SimBet,
1.27 for PROPHET, and 2.21 for FairRoute. Also, note
that the probability of individual errors increases with
the traffic load, and so they will happen more often in
algorithms that have more forwards. With PROPHET and
SimBet performing 5.6 and 1.4 more forwards than Fair-
Route, the overall damage of load errors for FairRoute is
considerably less than for the other algorithms.

• Attack: select the node that maximizes the damage
(argmax(qi)) and it will be 38.45%, 5.46% and 4.97%
for SimBet, PROPHET and FairRoute. Unbalanced load
distributions are very fragile against attacks.

A more detailed analysis of robustness is outside the
scope of this paper, at it has more complex ramifications in

throughput and efficiency. Errors are not independent, and one
failure can produce others in a cascade. However, the simple
analysis performed above illustrates the fact thatfairness is
not optional, and hence, designers of DTN routing algorithms
need to take fairness into consideration.

B. Dynamic and Static Heuristics

The subset of forwards that are also handovers have a
special interest because they reveal another effect of the best
next hop heuristics on the routing behavior. Figure 3(b) and
Table III show who are the users that perform the last deliver
of a message to the final destination. For the epidemic routing,
the top-5 users account for 28.8% of handovers. The same 5
users account for 26.80% of all handovers for PROPHET and
73.95% for SimBet.

These results illustrate one shortcoming of SimBet’s heuris-
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Algorithm top-1 top-5 top-10 Threshold
Epidemic 0.109 0.282 0.416 14

PROPHET 0.082 0.268 0.409 14
SimBet 0.441 0.739 0.858 2

FairRoute 0.058 0.188 0.313 20

TABLE III
DISTRIBUTION OF HANDOVERS BY USERS: TOP-N CORRESPONDS TO THE
FRACTION OF THE TOTAL NUMBER OF HANDOVERS CARRIED OUT BY THE
TOPN USERS. THRESHOLD IS THE NUMBER OF USERS THAT CARRY OUT

50% OF THE ALL HANDOVERS. THE TOTAL NUMBER OF USERS IS96.

tic: the delivery utility does not age over time and therefore
the heuristic does not forget. If a node’s utility values are
very stable against the changes of user’s contact patterns a
hill climbing strategy might be caught in a local mimina. Once
there, it will not forward a message unless the actual destina-
tion is encountered. Thus, the most central nodes effectively
becomemailmen: the messages get to them very efficiently due
to the high performance of SimBet’s heuristics but once they
reach the center of the network, the node will not deliver them
to anyone but to the destination. Conversely, PROPHET and
FairRoute’s heuristics are dynamic and change according to
the user’s contacts fluctuation. The message will not be trapped
in a local minima and therefore the handover distribution is
similar to the handover distribution of the Epidemic Routing.

VII. E XPLORING FAIRROUTE’ S ASSORTATIVENESS

In the last section, we saw that the assortative-based queue
control mechanism used by FairRoute yields a load distribution
which is more balanced that thenatural load distribution that
arises from the structure of a complex network. It is reasonable
to question whether this control mechanism can be seamlessly
implemented in other algorithms to increase their fairness.

Figure 5(a) depicts the cumulative distribution of the for-
wards when all the algorithms use the same assortativeness
principle as FairRoute, as described in Section III-B. We can
see that assortativeness has no effect in the epidemic, as it
follows a multi-copy policy. However, SimBet and PROPHET
do show an increase on their fairness, which is now better than
the natural load distribution. The efficiency of the routing al-
gorithms is also increased: from 0.038 to 0.077 for PROPHET
and from 0.166 to 0.219 for SimBet as shown in Table IV.

This increase in fairness and efficiency comes with a penalty
in throughput, reduced from 81.08% to 67.35% for SimBet and
from 74.33% to 67.47% for PROPHET. The loss of throughput
is due to the inability of the SimBet’s and PROPHET’s
heuristics to find alternative paths once the best next hop node
stops accepting messages. FairRoute, on the other hand, is
able to explore multiple paths between nodes [40], [41] more
effectively and to keep its throughput of 73.95%.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we presented FairRoute, an algorithm for
routing in delay tolerant networks that achieves over 33% more
efficiency than state-of-the art routing algorithms, without any
loss in throughput. FairRoute achieves this performance by
favoring peers thatappear to be good candidates to deliver
the message successfully to its target (perceived interaction

Algorithm Throughput Forwards Efficiency
Avg(%) Std Avg Std Avg Std

Epidemic (A) 89.75 3.07 499509 18250 0.016 0001

PROPHET (A) 67.47 4.62 78221 13575 0.077 0.014
SimBet (A) 67.35 4.62 28072 2180 0.219 0.018
FairRoute 79.90 3.94 32998 1492 0.221 0.007

TABLE IV
AVERAGE AND STANDARD DEVIATION FOR THROUGHPUT, FORWARDS

AND EFFICIENCY AT THE END OF THE SIMULATION. PROPHET, SIM BET
AND EPIDEMIC INCORPORATE THE ASSORTATIVITY-BASED QUEUE

PROPOSED BYFAIRROUTE

strength), and by limiting communication with those nodes
that have less importance in the network (assortativity).

The most important contribution of FairRoute, however,
is that unlike other routing algorithms inspired in social
mechanisms, our algorithm distributes the traffic load more
evenly. While in SimBet the top 10 users in the MIT reality
mining project dataset manage 54% of the traffic, they account
for only 27.5% of the traffic when FairRoute is used. Our
algorithm achieves a load distribution that is evenmore
balancedthan thenatural load distribution that arises from
the social network-like structure of the MIT dataset, in which
the top 10 users manage the 37% of the traffic.

At this point we would like to propose a last thought
experiment. Let assume that the reader is one of the top users
in the MIT dataset, i.e., the reader plays a central role in
the community and therefore a lot of traffic goes through
his/her cell-phone. Let also assume that the messages size
is 100Kb (e.g. an MMS, or an email with an attachment).
Then, on average, every single message sent between any
two individuals in the network would generate a total traffic
of 452Kb, 602Kb and 6230Kb for FairRoute, SimBet and
Epidemic routing respectively. The cost for the reader, a central
node is the social network, is of 20Kb with FairRoute, 80Kb
with SimBet, and as much as 500Kb with Epidemic routing
for every single message sent in the network.

Needless to say that Epidemic routing is prohibitively
expensive. The question remaining is whether SimBet, or even
FairRoute, are prohibitive as well. Although FairRoute reduces
the cost of SimBet by a factor of four, it is still carries a
significant cost for the central users of the network that they
might not be willing to assume. This reflexion does not intent
to downplay the Delay Tolerant Networks, an area if immense
potential, but to highlight the fact that there is a need to switch
the metrics of choice from raw efficiency to fairness and load
balancing in order to obtain more realistic routing algorithms.
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