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Abstract—The typical state-of-the-art routing algorithms for  [5], current algorithms do not duplicate messages in the
delay tolerant networks are based on best next hop hill-clining  network. This single-copy strategy requires routing altons
heuristics in order to achieve throughput and efficiency. Tk implement anext-best-hopheuristic which forwards the

combination of these heuristics and the social network streture i . . )
leads the routing to direct most of the traffic through a small MeSSages to those nodes with a highest probability to delive

subset ofgood users. For instance, in the SimBet algorithm, the the message to its destination.
top 10% of users carry out 54% of all the forwards and 85% of Some algorithms operate under the assumption that the

all t_he handqvers. This unfair |Oa(_j distribution IS not su_stai_n_able network of contacts is known a priori [6]. However, most
as it can quickly deplete constraint resources in heavily lized recent algorithms rely only on mobility [7], [8], [9], [10],

mobile devices (e.g. storage, battery, budget, etc.). Mareer, o . .
because a smalf n%mber gf users Iré/arry ag signific;nt amount [11]- The availability of good quality datasets with cortac

of the traffic, the system is not robust to random failures and traces gathered from real human mobility patterns [12]],[13
attacks. has spurred a breed of sophisticated routing algorithmis tha

To overcome these inefficiencies, this paper introduces Fai exploit the topological properties of social networks [145]
Route, a routing algorithm for delay tolerant networks inspired compute thenext-best-hogheuristics.

by the social processes operceived interaction strength, where . - . . .
messages are preferably forwarded to users that have a strger For instance, SimBet [16] relies on social distance based on

social relation with the target of the message; andassortativity, ~ transitivity [17] and betweenness centrality [18]. Alsajible
that limits the exchange of messages to those users with siari  [19] takes advantage of the empirically observed community

"social status”. We compare the performance of FairRoute to structure in social networks [20] to decide which heurissic

the state-of-the-art algorithms by extensive simulationson the ; ; ; ;
MIT reality mining dataset. The results show that our algorithm tmhgrgelfsli?r:);titgnbe effective depending on the social group of

outperforms existing algorithms in the de facto benchmark of
throughput vs. forwards. Furthermore, it distributes better the . Mo ON: E ss &
load; the top 10% carry out 26% of the forwards and 28% of ) TIVATION: FAIRNESS WHO:

the handovers without any loss in performance. Routing in DTNs requires the answer to two questions [21]:
1) how the best next hop is calculated; and 2) how the traffic
load is distributed among users. Most of the existing work ha
Thanks to the increasing number of mobile devices witlocused on maximizing throughput and minimizing number
wireless capabilities [1], the possibility of communicati of forwards in order to obtain efficient algorithms with high
without network infrastructure is becoming a reality. Far e delivery ratios, but with the exception of [22], [23], thdras
ample, pocket switched networks rely exclusively on usgfs ebeen no attention to scalability and reliability. Howevitre
changing messages among themselves upon proximity encautrinsic nature of DTNs, based on both human interactiah an
ters. Provided that a significant amount of traffic is composenobile phones, makes those networks prone to failures.
of delay tolerant messages, this paradigm, known also ay del Contact traces used by DTN routing algorithms are cor-
tolerant networks (DTN) [2], could contribute to signifithn related to social networks [24], [14], and social networks
reduce infrastructure costs and increasing bandwith bgrerdare a particular case of complex networks [25], [26]. One
of magnitude [3]. of the characteristics of such networks is that they exhibit
Because of their potential benefits, there has been a sigfat-tail connectivity distribution, where few nodes have
nificant body of work in DTNs, with emphasis on routingnany connections whereas the majority have very few. Since
algorithms. Since the seminal Epidemic routing algoritl#h [ messages are forwarded via contacts, it is inevitable tieat t
was introduced, there has been a succession of algorithmast connected nodes carry the majority of the traffic, hence
aimed at maximizing throughput — the number of messageducing an unfair load distribution. This is true everréfftic
arriving to the destination — while minimizing the trafficis routed at random.
overhead caused by the number of forwards. While EpidemicUnfortunately for DTNs, fairness can only worsen if heuris-
routing achieves the optimal throughput, it is very ineffidi tics are applied to the forwarding decisions as we will show
multiple copies of a message are forwarded until the netwonkxt. Let us assume a random forward algorithm. Then the
is flooded with redundant messages. Although there haweessage forwarding process is a random walk over a network
been proposals to reduce the network overhead of floodiwith the normalized adjacency matrix. The probability of

I. INTRODUCTION



going from node: to nodej is A;;, which is the inverse of interaction strengthand assortativity to guide the forward
1's connectivity degree under the random routing assumptiatecision upon contact.
On the other handj’s probability of receiving a message is ) . )
S7, Ay It trivial to see that nodes with higher connectivity?- Interaction Strength at Different Time Scales
have a higher probability of receiving the message. TheThe perceived interaction strength, a concept developed
probability of finding a message in noglewhich is equivalent from social influence [33] [34], represents the subjective
to its traffic load, can be calculated as the first eigenveator assessment of the strength of a social tie between two in-
PT, where Py j = Ay ;(37; Aij)~" is the stochastic matrix dividuals. The interaction strength can be used as an itufica
corresponding tod. The eigen vector for adjacency matricesf the likelihood of a contact to be sustained over time.
of heterogeneous connectivity distributions will be skdweFairRoute uses two different estimators of interactioargjth
towards the most connected nodes. Thus, rthtiral unbal- that operate at different time scales;; that indicates the
ance of the load distribution in complex networks appeafisteraction strength betweérand; in the short term; and,;
Furthermore, if the forward is not random, but informed bshat indicates the interaction strength in a longer timdesca
an heuristic that biases towards connectivity, the prditpbif  The strength of the; interaction increases upon contact but
the highly connected nodes to receive messages is ineljabldecreases over time at an exponential rateand -, for the
increased, and therefore, the load distribution to becoree e short term and long term interaction strength respectivegy
more unbalanced. such reason it is required thaf < r,.

In systems that display a similar complex network connec-When a contact between and j takes place, the nodes
tivity such as the Internet, road networks or airline traffie  update their perceived interaction strengths as follows:
unbalance problem is solved by upgrading the resources of

the bottleneck nodes, e.g., by installing faster switclves- o = oge oI Vken:, 1)
structing more 8-lane highways or expanding the airportk wi Nt = Agpe ) YkeN;, (2)
more terminals. However, this solution cannot be implement (0, M) = (o1, M) + (1,1) ©)

system-wide in DTNs because every single node belongs to

a different administrative domain (i.e., individual ugern  whereN; is the list of contacts of nodg ¢; is the time of node
addition, the mobile phone market is fairly homogeneous ifs last contact (with any other node), ahi the current time.
terms of resources consumption, such as battery-life. éFhetdpon contact, nodeé updates the exponential decrease of the
fore, unlike other systems, theatural unbalance due to the perceived strength with all the nodes that have encountered
network structure cannot be compensated by assuming thatla¢ past {V;); increases the interactions strength with ngde
the bottleneck nodes will be upgraded. by 1 (both the long term and the short term), and finally, the

Under these circumstances failures can occur by a varidgiye of last contact is updated, (= ¢).
of reasons: 1) nodes do not have enough resources to managife then define theaggregated interaction strength;;
the load and fail [27], 2) important nodes are logic targetsetween nodes and j ass;; = Xi;(Ai; — 0i5). Intuitively,
of attacks [28]; and 3) the mismatch between the incurréidle aggregated interaction strength is an indication of the
cost (total messages to forward) and the utility (own messadrequency of long term interactions (proportionality g;),
to forward) of the bottleneck nodes is a deterrent for theivhile penalizing spurious bursts of activity (proportidityato
participation in the network, and these nodes are, irolyicalthe difference between long and short time scales—o;)).
the most needed [29]. These problems illustrate the need of d.et definew;;; as nodei's perceived utility of nodej to
fair distribution of the traffic load in the routing algoritts of deliver a message to nodeas
DTNs. As an example, fairness and load balance are recurrent
topics i i o Ak (Njk — ajk)

pics in other areas such as wireless sensor networks or ;) = , (4)
Internet [30], [31], [32]. Mg (N = ajk) = Ak (Aik — o)

The rest of the paper is organized as follows: in Seghich representstility of nodej to deliver a message tb
tion Il we present FairRoute, our DTN routing algorithmas seen by nodg normalized by the total utility. For values
In Section IV we discuss the empirical dataset used in tlpe ui;r > 0.5, we expect the nodg to do a better job than
simulation as well as the experimental design. Sections V- \felivering the message te. The utility ug;i, is defined only
summarize and discuss the results of the experiment in terjisen \;;, + \jr > 0, otherwise we set it as zero.
of efficiency and throughput (Section V), fairness (Secih  Analogously, letu;; be i’s perceived utility of nodej to
and goodness of the assortative load control (Section VIBeliver a messag® any nodedefined as
Finally Section VIl presents the conclusions and futurekyvo

>ken; Nik(Ajk — o)

IIl. FAIRROUTE ALGORITHM R ken; Aik(Aje = ajk) + Xpen, Aik(Aik — oik) ©)

In DTNs messages are forwarded from node to node upon_. L , .
proximity contacts. Because the trace of contacts is a lsoclaF'r_]a”y.’ node: will forward to j a message whose destina-
network, we turn into social science to design an effectiion IS & if
routing algorithm that overcomes the unfairness problem of { Uijh >
existing algorithms. In particular FairRoute reliesparceived Uij >

(Nik + /\jk) >0

A\
AN (e + /\jk) =0 )

N[0 =



Notice that in order to calculate the utilities;,, users only ~ This mechanism of the queue size control to achieve load
exchange their perceived interaction strength on nigdeut balance is analogous to thack pressureongestion control
never exchange the full contact liat;. In order to obtainV;, [30], which is applied to fields such as the Internet [32],][42
a nodei should probeg for every possible value df in a short ATM and ethernet networks [43], and wireless sensor nets/ork
period of time (as the values;;;, decay with time). Then it [31], among others.
is very easy forj to identify such an attack and deny further ) , )
communication withi. C. Privacy Considerations

As social network-based routing algorithms become more
B. Assortative-Based Queue Control sophisticated they require access to more information abou

The heuristics in (6) do not completely achieve a balanc&gers, and therefore, they raise rightful privacy conceffios
traffic distribution. The reason is that the routing decisis instance, Bubble and SimBet require access to the full fist o
still a greedy maximization of the utility, with the forwdng —contacts of a contact. While this is common practice in docia
biased towards the high connectivity nodes. networking sites, users of these systems explicitly aggeeg

In order to counter this effect, we can again turn into seciolneir friends. This is not the case of DTNs, where contacts
ogy and observe the mechanisms by which people decide wi{i¢ 2ggregated upon proximity encounters. In addition b
whom they interact with. At the risk of being stereotypical‘?‘lso requires access to the social group label the target use
is it an empirically observed fact that the social status ®€longs to.
someone’s neighours is a good indicator of his status. TheHaving access to whom and how often a user has been
reason is that since social interactions require resoutews interacting with is a security issue, and can be misused, for
are limited, humans carefully choose with whom they sper@ample, for profiling. While the authors’ argument is talga
their resources with, and tend to allocate them so that tH¥ Privacy off in return for performance, we believe that it
individual's utility is maximized. In other words, peopld o iS preferable to obtain performance without giving sewsiti
the same kind tend to interact together, and tend to distegitformation away.
interactions from individuals from a lower social status.

For example, a big shot professor would allocate to time to
review preliminary work from an equal peer, but it is unligel A- Contact Dataset
to do the same for a graduate student. This behavior, known a€ontract trace datasets [12], [13] are crucial to evaluate t
assortativeness or homophyly —, is one of the driving factorsperformance of routing algorithms in DTNs. While large scall
on the way individuals interact with each other [35], [36]dataset (e.g. city-wide) are not available [44], the emipti
[37], [38]. Assortativity is in fact what makes social netke datasets allow the benchmarking of social network based
different from other complex networks [39]. routing algorithms. In this paper we use the MIT reality

To capture the assortativeness in our algorithm, we defingning dataset [13], which is widely used in the literature,
social statusof a node: in the DTN to be functionally thus allowing a fair comparison of FairRoute with existing
equivalent to the size of the node’s queue length The DTN routing algorithm. The MIT dataset was collected in the
gueue length can be interpreted an indication that the nddéT campus, that represents a general purpose scenarar bett
is often chosen to forward packets, and hence, is a measilvan other existing datasets such as Infocom 2006 [10].
of its popularity'. Since accepting to forward a message has aln the MIT dataset users carried a cell phone with a
cost, nodes will only accept forward request from those sodsoftware that logged contacts by proximity using the bla#to
of equal or higher status. With assortative-based queuteatpn discovery function. From the dataset we extracted the fist o
a node; would forward a message directédhrough; if any observed contactgi, j,¢) wherei and;j are users, antlis the
of the following conditions is met time at which the interaction takes place. Some contactiimig

1 not last enough to allow data transfer between cell-phones.

(wigr > 3) A Qae + A1) >0 A (@ < Qi) However, since we are only interested in patterns of human-
(g = 11) A ik + Ag) > 0 () to-human contact, we do not take this factor into considtemat

(wij >3) A e +An) =0 A (Q; Qi) The MIT dataset provides contact trace information for 100

High status nodes will be able to forward messages faster R€rs over a period of over a yéaFigure 1(a) shows the time

to their privileged position, whereas low status nodes hdlle  at which each contact takes place; there are three different
to find alternative paths. Since contact and social networkiiges, the first 652 interactions took place over the first 7

have a diversity of paths between two nodes [40], [41onths, which might correspond to the development of the

constrains in the forwarding introduced by the assortativeystem. In the following 5 months the system showed 79840

based control gueue does not necessar“y |mp||es a re@ucﬂi@teractions. In the last 4 months there was a decrease of the
of throughput (Section V). On the other hand, it does ha@tivity and only 33577 contacts were collected.

a positive impact on the fairness of the routing algorithm We partition the MIT dataset into 16 overlapping subsets
(Section VI). each consisting in 35K contacts and a relative offset of 5K

contacts. The utility of this partition is twofold. First,allows

INote that popularity does not necessarily means that the i®e high
performer, but instead that the nodepisrceivedto be very useful. 2The first interaction is logged on 01/01/2004 and the last ®0%2005.

IV. CONTACT TRACE AND EXPERIMENTAL DESIGN



the simulations, and following the authors, we set the
parametery = 0.5.
The algorithm Bubble [19], which exploits the community
‘ ‘ ‘ ‘ structure found in social networks using a distributed telus
* number ofmieracions R ing algorithm [47], was not included in our results because i
(a) Time (in days) at which the n-th contact takes place requires the sender to know the address and the social group
of the destination node, which is unfair to the other aldnonis
that only require the address. In addition, in the origireger,
Bubble is not compared against the existing SimBet, but thei
o e comparison with PROPHET indicates that its performance is
oigad o better than PROPHET but worse than SimBet.

C. Experimental Design

L We run the four algorithms for each one of the 16 subsets
(b) Cumulative Distribution of(c) Scatter plot of the number .
contacts by user in two ovewf contacts in two over|apping Of the MIT contact dataset The fII’St 5K contacts Of the Subset
lapping subsets: 30K to 65Kubsets. Each circle represents are used to bootstrap the different algorithms. This warm up
and 50K to 85K contacts.  one of the 96 users that expe- period is used to avoid introducing artifacts in the resdlis
to the heuristics’ different convergence time. After warm u
Fig. 1.  Partition of the MIT reality mining project dataset overlapping phase, all the nodes send a message to every other node in the
subsets system, resulting in 9120 messages.
FairRoute’s algorithm parameters are setrtp = 5 x

—473—1 _ —-373,—1 i
Us to test the sensitivity of the algorithms against thetings 10 7~ andr, = 5x 107°h~". Which correspond to

variance of the contacts. Second, it minimizes the bias ef tfié an average inter-contact time of 2000 and 200 hours
results toward the MIT dataset. respectively. These values will depend on the charadterist

Figure 1(b) shows the comparison between the user's curiiifer-contact time of the social network under scrutiny;, fo

lative distribution in two partially overlapping subsefsofn the MIT dataset they are extremely large because the centact

30 to 65 thousand-th contact and from 50 to 85 thousar@< V€Y Sparse (Fi_g. 1(2)). We also tested thg parameter’s
th contact). As expected, the aggregate contact distaibutiSENSitivity. Perturbations up to one order of magnituderditl
QW qualitative changes on the results of the algorithm.

does not experience a lot of variance — as contacts take plﬁe
between the same people in the same community. However, a V. THROUGHPUT ANDEFFICIENCY EVALUATION

look at the individual level (Fig. 1(c)) reveals that the em  paximizing the throughput, i.e., increasing the number of
of contacts per user experiences a fair amount of variatiqgiessages that reach their destination, is the goal of artingpu
Note that both subsets have a 42% overlap. algorithm. However, minimizing the number of forwards is
also crucial to limit the resource consumption due to traffic

] ] battery-life, storage, bandwidth. For this reasonéffeciency

We evaluate the performance of FairRoute against well; the ratio between throughput and number of forwards, in

known algorithms in the literature. combination with the throughput, are generally acceptetias

« Epidemic routing [4] is a flooding multi-copy algorithmmetrics of choice for the routing algorithms.
often used as a baseline for comparison because, whil&Figure 2(a) shows the average throughput across the 16
extremely inefficient in the number of forwards, it issubsets of the MIT dataset for all the algorithms. Table |
optimal in terms of throughput. Furthermore, Epidemigshows the variance and numerical results summarized. The
routing is very adequate when exploring fairness, becaugpidemic routing yields the optimal throughput of 90% on
its load distribution is caused solely by the networkverage. SimBet and FairRoute deliver 81.1% and 79.9% of
topology (i.e., it does not apply any heuristic to directhe messages respectively. PROPHET get a slightly worse
the forwarding). performance with an average throughput of 74.5%.

« PROPHET [45] is widely used as the reference algorithm While all the algorithms achieve asymptotically good
in terms of efficiency (e.g. in [16], [19]). PROPHET useshroughputs, it is important to note that epidemic is notyonl
the history of contacts to calculate the probability obptimal in terms of throughput but also in delivery speed.
a node to deliver the message to the destination. Likes an example, if we consider the throughput after 10K
FairRoute, it also takes the time between contacts intontacts, the throughput is 36.4%, 12.7%, 12.5% and 12.4%
account to update its utility function. In our simulationsfor Epidemic, SimBet, PROPHET and FairRoute respectively.
we use the parameters suggested by the author’s A we can see, the three single-copy algorithms have a very
{Pinit, 3,0} = {0.75,0.25,0.99}. similar performance, and the epidemic is clearly ahead ®f th

« SimBet [16] combines a decentralized version of beest.
tweenness centrality [46] and the probability of future However, as Figure 2(b) shows, FairRoute requires consid-
collaboration [17]. To the best of our knowledge Simerably less forwards. SimBet, PROPHET and epidemic require
Bet is the better algorithm to date efficiency-wise. Fat.37, 5.5 and 157 times more forwards than FairRoute.

time of interaction (in days)

L
) 2

CDF number of interactions

1500 2000 2500 3000
sssss r of interaction at split 30K-65K

B. Reference Algorithms
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Fig. 2. Throughput and Efficiency Evaluation

Algorithm | Throughput Forwards Efficiency Algorithm | top-1 | top-10 | top-20 | Threshold
Avg(%) StdDev | Avg StdDev | Avg StdDev Epidemic | 0.081 | 0.373 | 0.571 | 17

Epidemic | 89.85 3.03 518790 18947 | 0.016 0.001 PROPHET | 0.075| 0.421 | 0.616 | 14
PROPHET | 74.53 4.21 180790 26187 | 0.038 0.006 SimBet 0.134 | 0.539 | 0.706 | 9

SimBet 81.08 4.74 45141 5389 0.166 0.022 FairRoute | 0.046 | 0.275 | 0.452 | 24
FairRoute | 79.90 3.94 32998 1492 0.221  0.007

TABLE I
TABLE | DISTRIBUTION OF FORWARDS BY USERSTOP-N CORRESPONDS TO THE

AVERAGE AND STANDARD DEVIATION FOR THROUGHPUTFORWARDS
AND EFFICIENCY AT THE END OF THE SIMULATION.

FRACTION OF THE TOTAL NUMBER OF FORWARDS CARRIED OUT BY THE
TOP N USERS THRESHOLD IS THE NUMBER OF USERS THAT CARRY OUT
50% OF THE ALL FORWARDS THE TOTAL NUMBER OF USERS 196.

We would like to mention than SimBet [16] uses a different
definition for forwards. They do not count as a forward thand efficiency (Table 1). For instance, the throughput has a
final hop by which the message arrives to destination (t§éndard deviation of 3.03% for epidemic routing, 3.94% for
handover). Also, they count as one forward when differef@irRoute and 4.74% for SimBet. In the case of the number
messages can be bundled in the same data transfer ses8bfprwards, the standard deviation accounts for diffeesnof
This metric is somewhat misleading in terms of the codil-9%, 4.5% and 3.7% for SimBet, FairRoute and epidemic
associated to a message. Handovers messages still have a’eg§ng respectively.
that needs to be accounted for when it send via wireless. ThéSuch differences on the throughput and in the number of
same happens to messages that are delivered in the same f@agards clearly show the sensitivity of routing algoritsro
transfer; the time of the transfer and its toll on the resesrcthe topology of the network of contacts. Despite the subsets
will be multiplied by the number of messages contained #€longing to the same social/contact network, and being
the bundle. With SimBet's metric, FairRoute (with 1184@learly overlapped, the algorithms are sensitive to fluana
operations) still outperforms SimBet (with 13908 openagip in the contact patterns. We anticipate the need for largke sca
Despite that, and for the sake of clarity, we take into actougPntact/social networks like [44] in order to explore the ro
each individual message transfer as a forward. bustness of the routing algorithms for large-scale depkaym

Finally, Figure 2(c) displays the average efficiency. The
most efficient algorithm is FairRoute followed by SimBet. VI
PROPHET and epidemic routing fall behind due to their high In the previous section we showed that FairRoute compares
costs in terms of number of forwards. favorably to the state-of-the art DTN routing algorithms.

FairRoute’s efficiency of 0.22 means that each messagempared to SimBet, FairRoute obtains a 33% increase in
delivered to the destination requires, on average, 4.58si@ efficiently at a cost of just 1.2% loss in throughput. However
operations. Thus, assuming that the traffic generated by thespite the good performance on the standard metric, the aim
routing algorithms is negligible when compared to the teaffiof FairRoute is neither throughput nor efficiency, but fass.
generated by the forwards, one message of 100Kb results in &igure 3(a) shows the cumulative distribution of forwards
452Kb of traffic to be handled by the participants of the DTNor the four different algorithms. We can see that traural
In comparison, SimBet, PROPHET and Epidemic routing hawead distribution due to the network topology — shown by the
a cost of 6.02, 26.3 and 62.5 times the cost of forwarding oEpidemic routing — is already unbalanced: 50% of the tradfic i
message respectively. handled by only 17 users, the top-1 user deal single handedly
with 8.1% of the traffic in the system and the top-10 users
deals with 37%.

As expected, the different subsets of the contact traceWhile the perfectly fair load balance would be that 50%
have a strong variance in throughput, number of forward$ traffic to be managed by 50% of users, it can only be

FAIRNESS EVALUATION

A. Variance Across Subsets
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Fig. 3. Fairness evaluation

achieved in a social network if there are no forwards but ontyiost of the messages in transit in their queues. This behavio
handovers (i.e., each individual simply waits until it cameis inadvisable in terms of robustness, as a departure oluadai
across the destination of the message — if ever). Since tifeone of those users would result in a loss of an important
perfect fairness is unrealistic, we set the baseline refere fraction of the messages waiting to be delivered.
as the load distribution yield by the Epidemic routing, wher The behavior of the queues of PROPHET (Fig. 4(b)) is
the network topology is the only factor driving the loadnore robust than SimBet's. The queue size distribution itequ
distribution. homogeneously distributed among all users. The apparent
As we discussed in Section Il, the traffic load can onlgliscontinuity of the lines in the PROPHET is due to the
get worse for PROPHET and SimBET algorithms. In SimBédtigh turn over of messages in the queue; PROPHET has one
50% of traffic goes through only 9 nodes, from which therder of magnitude more forwards than SIimBET and Fair-
top one handles 13.4%. PROPHET does better with 50% Rbute. Consequently, messages exchange hands much more
traffic being managed by 14 nodes and the top one node 7.5%guently and the queue distribution shows these fluainati
of the traffic load. This behavior can be extrapolated to all The FairRoute’s queue size distribution (Fig. 4(c)) is
routing algorithms based solely diest next hoeuristics as more balanced than the other algorithms. This is due to its
these heuristics contribute to the the already existinggs®s assortative-based queue control mechanism, which, aswe sa
of preferential attachment [25] of traffic due to the networln Fig. 3(a), also makes the traffic load more balanced.
topology. The fate of routing algorithms focused solely @stb  With the traffic load distribution (Fig. 3(a)) and the queue
next hope heuristics is to increase performance (throughgire distribution (Fig. 4) we can explore the effect of faisa
and efficiency) at the expensed on unfair traffic distriowgio on robustness with a simple analysis. Let assume that an erro
FairRoute, on the other hand, exhibits a load distributidmappens during the forwarding process, and denptas the
that is more fair than theatural distribution of the epidemic probability of node: fails. Let Q;; be the size of the queue
routing. The assortativeness-based control queue is ableof node: at timet. We defineg; as the average relative size
distribute the traffic more evenly among all the users, amd i's queue over time with respect to the total number of
therefore, leverage the congestion problems and failuies dmessages in the network, i.ey,, = Zzt# Let us also

cussed in section lll. In FairRoute, 50% of the traffic igjenote the traffic load of nodeas f; which is the fraction of

handled by 25% of users, significantly better than the 9.3% Qf\ards carried out by. Finally, let define thalamageD as

users for SimBet, the 14.5% of users for PROPHET and the _ S e:q:, i.€., the average cost in the fraction of messages

17.7% of the users for epidemic routing. in translit lost due a node’s failure.

We consider three types of failures or errors:

) . ) . . ... e Random Error: the probability of failure is equally dis-
Figure 4 displays the evolution of the queue size distrdyuti tributed between all nodes. Thus, = L. Then, its

over time for the SimBet, PROPHET and FairRoute algo- 9 i

: ) . ) : trivial to see that the damage I3 = 9—16 A random error
rithms. The white space between lines in the figure represent produces on average an loss of 1.04% of the messages

the fraction of messages in transit that has in its quéng ( regardless the routing algorithm.

at every interaction..During the in.itial stage of trainirfgt « Load/cost errdt in the case of an error, the probability
5K contacts) there is no forwarding and each user's queue ¢ failure of a nodei is proportional to its traffic load
contains exactly 95 messages.

In Fhe case of SimBet, (F|gwe 4(a)), it is revealing to S€€3The case of a node defecting because its perceived codfitbeat® is
that right after the warmup period, two of the users accutaulaquivalent to the load error case.

A. Query Size Dynamics and Robustness
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Fig. 4. Evolution of the queue size distribution for all nedgtacked). The proportion of messages in transit storagsén's: queue corresponds to the
white space between to lines. The proportion are stackedatdttem sum one. The first 5K contacts correspond to the warrintthis period each user has
961 of the messages stored in the queue. After the 5K contacfotherding starts and the queue size distribution evolwes time. This plot correspond
to the 10K-45K split of the MIT contact dataset.

fi (resources are depleted proportionally to the trafficdhroughput and efficiency. Errors are not independent, ared o
Then, the average damage afie failure due to load is failure can produce others in a cascade. However, the simple
D =", eiq;, resulting in a damage of 5.81 for SimBetanalysis performed above illustrates the fact tf@tness is
1.27 for PROPHET, and 2.21 for FairRoute. Also, noteot optiona) and hence, designers of DTN routing algorithms
that the probability of individual errors increases witmeed to take fairness into consideration.

the traffic load, and so they will happen more often in

algorithms that have more forwards. With PROPHET an8l. Dynamic and Static Heuristics

SimBet performing 5.6 and 1.4 more forwards than Fair- The subset of forwards that are also handovers have a

Rout_e, the overall damage of load errors f_or FairRoute é?)ecial interest because they reveal another effect of ¢kt b
con5|d.erably less than for the other .algorlthms. next hop heuristics on the routing behavior. Figure 3(b) and
« Attack: select thg nqde that rrlaxmlzeos the damf%ble Il show who are the users that perform the last deliver
(argmaw(qi)) and it will be 38'.45 %, 5.46% and 4.97 /(’(Ha message to the final destination. For the epidemic rgutin
Lqrf:)m?et, PROPHEI an_ld Fa|rR01:te£tUr|1(balanced qu e top-5 users account for 28.8% of handovers. The same 5
Istributions are very fragiie against attacks. users account for 26.80% of all handovers for PROPHET and
A more detailed analysis of robustness is outside th8.95% for SimBet.
scope of this paper, at it has more complex ramifications inThese results illustrate one shortcoming of SimBet’s tseuri



Algorithm | top-1 | top-5 | top-10 | Threshold Algorithm Throughput Forwards Efficiency
Epidemic | 0.109 | 0.282 | 0.416 | 14 Avg(%) Std | Avg Std Avg Std
PROPHET | 0.082 | 0.268 | 0.409 14 Epidemic (A) | 89.75 3.07| 499509 18250 0.016 0001
SimBet 0.441 | 0.739 | 0.858 | 2 PROPHET (A) | 67.47 4.62| 78221 13575| 0.077 0.014
FairRoute | 0.058 | 0.188 | 0.313 | 20 SimBet (A) 67.35 4.62| 28072 2180 | 0.219 0.018
FairRoute 79.90 3.94| 32998 1492 | 0.221 0.007
TABLE Il
DISTRIBUTION OF HANDOVERS BY USERSTOP-N CORRESPONDS TO THE TABLE IV

FRACTION OF THE TOTAL NUMBER OF HANDOVERS CARRIED OUT BY THE AVERAGE AND STANDARD DEVIATION FOR THROUGHPUTFORWARDS
TOP N USERS THRESHOLD IS THE NUMBER OF USERS THAT CARRY OUT  AND EFFICIENCY AT THE END OF THE SIMULATION. PROPHET, 8WBET
50% OF THE ALL HANDOVERS. THE TOTAL NUMBER OF USERS 196. AND EPIDEMIC INCORPORATE THE ASSORTATIVITYBASED QUEUE
PROPOSED BYFAIRROUTE

tic: the delivery utility does not age over time and therefor - L ,

the heuristic does not forget. If a node’s utility values argi'ength), and by limiting communication with those nodes
very stable against the changes of user’s contact pattern§@ have less importance in the netwoasgortativity.

hill climbing strategy might be caught in a local mimina. @nc_ | "€ Most important contribution of FairRoute, however,
there, it will not forward a message unless the actual destiS that unlike other routing algorithms inspired in social
tion is encountered. Thus. the most central nodes eﬁéytivénechanisms, our algorithm distributes the traffic load more
becomemailmen the messages get to them very efficiently dug/enly- While in SimBet the top 10 users in the MIT reality
to the high performance of SimBet's heuristics but once th&yining Project dataset manage 54% of the traffic, they adcoun
reach the center of the network, the node will not deliventhe!©r Only 27.5% of the traffic when FairRoute is used. Our
to anyone but to the destination. Conversely, PROPHET afil@orithm achieves a load distribution that is everore
FairRoute's heuristics are dynamic and change according%lancedthan thenatural load distribution that arises from
the user's contacts fluctuation. The message will not bepadp the social network-like structure of the MIT dataset, in @i

in a local minima and therefore the handover distribution [§€ toP 10 users manage the 37% of the traffic.

similar to the handover distribution of the Epidemic Rogtin At this point we would like to propose a last thought
experiment. Let assume that the reader is one of the top users

VII. EXPLORING FAIRROUTE'S ASSORTATIVENESS in the MIT dataset, i.e., the reader plays a central role in

In the last section, we saw that the assortative-based quéi@ community and therefore a lot of traffic goes through
control mechanism used by FairRoute yields a load disidbut his’her cell-phone. Let also assume that the messages size
which is more balanced that thetural load distribution that is 100Kb (e.g. an MMS, or an email with an attachment).
arises from the structure of a complex network. It is reabtna Then, on average, every single message sent between any
to question whether this control mechanism can be seamled¥fo individuals in the network would generate a total traffic
implemented in other algorithms to increase their fairness of 452Kb, 602Kb and 6230Kb for FairRoute, SimBet and

Figure 5(a) depicts the cumulative distribution of the forEpidemic routing respectively. The cost for the reader rdreé
wards when all the algorithms use the same assortativenggge is the social network, is of 20Kb with FairRoute, 80Kb
principle as FairRoute, as described in Section I1I-B. We cavith SimBet, and as much as 500Kb with Epidemic routing
see that assortativeness has no effect in the epidemic, af9fitevery single message sent in the network
follows a multi-copy policy. However, SimBet and PROPHET Needless to say that Epidemic routing is prohibitively
do show an increase on their fairness, which is now better th@xpensive. The question remaining is whether SimBet, on eve
the natural load distribution. The efficiency of the routing al-FairRoute, are prohibitive as well. Although FairRouteuees
gorithms is also increased: from 0.038 to 0.077 for PROPHE!re cost of SimBet by a factor of four, it is still carries a
and from 0.166 to 0.219 for SimBet as shown in Table IV. significant cost for the central users of the network thay the

This increase in fairness and efficiency comes with a penaffjight not be willing to assume. This reflexion does not intent
in throughput, reduced from 81.08% to 67.35% for SimBet ari@l downplay the Delay Tolerant Networks, an area if immense
from 74.33% to 67.47% for PROPHET. The loss of throughp@etential, but to highlight the fact that there is a need tadw
is due to the inability of the SimBet's and PROPHET'$he metrics of choice from raw efficiency to fairness and load
heuristics to find alternative paths once the best next hde ndalancing in order to obtain more realistic routing algunis.
stops accepting messages. FairRoute, on the other hand, is
able to explore multiple paths between nodes [40], [41] more
effectively and to keep its throughput of 73.95%.
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VIIl. CONCLUSIONS ANDFUTURE WORK

In this paper we presented FairRoute, an algorithm fo _ . :
L . 1] S. Keshav. Why cell phones will dominate the future intr SIG-
routing in delay tolerant networks that achieves over 33%emo ™ comm Comput. Commun. Re@5(2):83-86, 2005.

efficiency than state-of-the art routing algorithms, withany  [2] K. Fall. A delay-tolerant network architecture for cleaiged internets.

loss in throughput. FairRoute achieves this performance by In Proc. SIGCOMM 2003. . .
f . h b d did deli [3] M. Grossglauser and D. Tse. Mobility increases the cipat ad hoc
avoring peers thaappearto be good candidates to deliver wireless networks.IEEE/ACM Transactions on Network40(4):477—

the message successfully to its targeerCeived interaction 486, 2002.
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